+0  
 
+1
152
3
avatar+31 

Hallo.

ich brauche dringend eure Hilfe. Ich habe keinen Schimmer wie ich das berechnen soll.

Die Aufgabe lautet:

Gegeben sei die Funktion f(x) = 2 / 1-x

Zeigen Sie (mit vollständiger Induktion), dass die n-te (n EN) Ableitung von f von folgender Form ist:

 

f(n) (x) = n! (1/ (1-x)n+1 + (-1)n   1/(1+x)n+1 )


Hinweis: Die nullte Ableitung f(0) ist die Funktion selber. also f(0) (x) = f (x)  .Ansonsten ist z.B. f(3) nur eine andere Schreibweise für f"'(x)

Danke im Voraus.
 

 14.12.2018
 #1
avatar+21819 
+8

Gegeben sei die Funktion

\(f(x) = \dfrac{2}{1-x^2}\)
Zeigen Sie (mit vollständiger Induktion), dass die n-te  Ableitung von f von folgender Form ist:

\(f^{(n)} (x) = n! \left(\dfrac{1}{(1-x)^{n+1} }+ (-1)^n \dfrac{1}{(1+x)^{n+1}} \right)\)

 

Induktionsanfang für \(n_0\) gilt:

\(\begin{array}{|rcll|} \hline f^{(0)} (x) &=& 0! \left(\dfrac{1}{(1-x)^{0+1} }+ (-1)^0 \dfrac{1}{(1+x)^{0+1}} \right) \\\\ &=& 1\cdot \left(\dfrac{1}{1-x }+ 1\cdot \dfrac{1}{1+x} \right) \\\\ &=& \dfrac{1+x+1-x}{(1-x)(1+x) } \\\\ &=& \dfrac{2}{1-x^2}~ \checkmark \qquad f^{(0)} (x) = f (x)\\ \hline \end{array} \)

 

Induktionsvoraussetzung (I.V.):
Für ein beliebiges \(n \in \mathbb{Z}\) mit \(n \ge n_0\) gilt:

\(\begin{array}{|rcll|} \hline f^{(n)} (x) &=& n! \left(\dfrac{1}{(1-x)^{n+1} }+ (-1)^n \dfrac{1}{(1+x)^{n+1}} \right) \\ \hline \end{array}\)

 

Induktionsbehauptung: dann gilt auch für \((n+1)\)

\(\begin{array}{|rcll|} \hline f^{(n+1)} (x) &=& (n+1)! \left(\dfrac{1}{(1-x)^{(n+1)+1} }+ (-1)^{(n+1)} \dfrac{1}{(1+x)^{(n+1)+1}} \right) \\ \hline \end{array} \)

 

Induktionsschluss: \(f^{(n+1)} (x) = \left(f^{(n)}(x) \right)'\)

\(\begin{array}{|rcll|} \hline \left(f^{(n)}(x) \right)' &=& \left[ n! \left(\dfrac{1}{(1-x)^{n+1} }+ (-1)^n \dfrac{1}{(1+x)^{n+1}} \right) \right]' \\\\ &=& \Big[~ n! \left(~ (1-x)^{-(n+1)} + (-1)^n (1+x)^{-(n+1)} ~\right) ~\Big]' \\\\ &=& n! \Big[~\left(~ (1-x)^{-(n+1)} + (-1)^n (1+x)^{-(n+1)} ~\right) ~\Big]' \\\\ &=& n! \Big(~ -(n+1)(1-x)^{-(n+1)-1}\cdot (-1) + (-1)^n ( -(n+1))(1+x)^{-(n+1)-1}\cdot 1 ~\Big) \\\\ &=& n! \Big(~ (n+1)(1-x)^{-(n+1)-1} + (-1)^n (-(n+1))(1+x)^{-(n+1)-1} ~\Big) \\\\ &=& n!(n+1) \Big(~ (1-x)^{-(n+1)-1} + (-1)^n \cdot (-1)(1+x)^{-(n+1)-1} ~\Big) \\\\ &=& n!(n+1) \Big(~ (1-x)^{-(n+1)-1} + (-1)^n \cdot (-1)^1(1+x)^{-(n+1)-1} ~\Big) \\\\ &=& n!(n+1) \Big(~ (1-x)^{-(n+1)-1} + (-1)^{(n+1)}(1+x)^{-(n+1)-1} ~\Big) \\\\ &=& (n+1)! \Big(~ (1-x)^{-(n+1)-1} + (-1)^{(n+1)}(1+x)^{-(n+1)-1} ~\Big) \\\\ \left(f^{(n)}(x) \right)' &=& (n+1)! \left(~ \dfrac{1}{(1-x)^{(n+1)+1}} + (-1)^{(n+1)} \dfrac{1}{(1+x)^{(n+1)+1}} ~\right)~\checkmark \\ \hline \end{array}\)

 

 

laugh

 17.12.2018
 #2
avatar+31 
+2

Dankeee dir vielmals ! 

 

Ist das alles was man für diese Aufgabe rechnen muss ?

 17.12.2018
 #3
avatar+21819 
+8

Hallo Tali123,

 

ich denke mehr wüssen wir nicht rechnen, denn wir haben bewiesen, das die Induktionsbehauptung mit dem Induktionsschluss übereinstimmt.

 

laugh

heureka  18.12.2018

33 Benutzer online

avatar
avatar
avatar
avatar
avatar
avatar