+0  
 
0
710
2
avatar

wie rechne ich den Logarithmus aus dem Bruch : (1/5.wurzelvon64) zur basis 4 aus

 30.06.2015

Beste Antwort 

 #1
avatar+14538 
+3

$${\frac{{\mathtt{1}}}{{\sqrt[{{\mathtt{{\mathtt{5}}}}}]{{\mathtt{64}}}}}} = {\mathtt{0.435\: \!275\: \!281\: \!648\: \!062\: \!1}}$$

 

log(x) zur Basis 4 =    $${\frac{{ln}{\left({\mathtt{x}}\right)}}{{ln}{\left({\mathtt{4}}\right)}}}$$     =  $$\left({\frac{{ln}{\left({\frac{{\mathtt{1}}}{{\sqrt[{{\mathtt{{\mathtt{5}}}}}]{{\mathtt{64}}}}}}\right)}}{{ln}{\left({\mathtt{4}}\right)}}}\right) = {\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{5}}}} = -{\mathtt{0.6}}$$

 

Gruß radix !

 30.06.2015
 #1
avatar+14538 
+3
Beste Antwort

$${\frac{{\mathtt{1}}}{{\sqrt[{{\mathtt{{\mathtt{5}}}}}]{{\mathtt{64}}}}}} = {\mathtt{0.435\: \!275\: \!281\: \!648\: \!062\: \!1}}$$

 

log(x) zur Basis 4 =    $${\frac{{ln}{\left({\mathtt{x}}\right)}}{{ln}{\left({\mathtt{4}}\right)}}}$$     =  $$\left({\frac{{ln}{\left({\frac{{\mathtt{1}}}{{\sqrt[{{\mathtt{{\mathtt{5}}}}}]{{\mathtt{64}}}}}}\right)}}{{ln}{\left({\mathtt{4}}\right)}}}\right) = {\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{5}}}} = -{\mathtt{0.6}}$$

 

Gruß radix !

radix 30.06.2015
 #2
avatar+12514 
0

So kann man es auch rechnen.

 30.06.2015

35 Benutzer online

avatar