wie leite ich wurzeln ab ?
\boxed{ ~~ \sqrt[n]{x} &~=~& x^{ \frac{1}{n} } ~~}\\\\ \begin{array}{rcl} (\sqrt[n]{x})' &=& (x^{ \frac{1}{n} })' \\ \\ (\sqrt[n]{x})' &=& \frac{1}{n} \cdot x^{ \frac{1}{n} -1 }\\\\ (\sqrt[n]{x})' &=& \frac{1}{n} \cdot x^{ \frac{1}{n} }\cdot x^{-1}\\\\ (\sqrt[n]{x})' &=& \frac{1}{n\cdot x} \cdot x^{ \frac{1}{n} }\\\\ (\sqrt[n]{x})' &=& \frac{ \sqrt[n]{x} }{n\cdot x} \end{array} \\\\\\ \boxed{ ~~(\sqrt[n]{x})' ~=~ \dfrac{ \sqrt[n]{x} }{n\cdot x} ~=~ \dfrac{1}{ n\cdot \sqrt[n]{x^{n-1} } } ~~ }
Beispiele:
(√x)′ = √x2⋅x = 12⋅√x2−1 = 12⋅√x(3√x)′ = 3√x3⋅x = 13⋅3√x3−1 = 13⋅3√x2(4√x)′ = 4√x4⋅x = 14⋅4√x4−1 = 14⋅4√x3⋯
wie leite ich wurzeln ab ?
\boxed{ ~~ \sqrt[n]{x} &~=~& x^{ \frac{1}{n} } ~~}\\\\ \begin{array}{rcl} (\sqrt[n]{x})' &=& (x^{ \frac{1}{n} })' \\ \\ (\sqrt[n]{x})' &=& \frac{1}{n} \cdot x^{ \frac{1}{n} -1 }\\\\ (\sqrt[n]{x})' &=& \frac{1}{n} \cdot x^{ \frac{1}{n} }\cdot x^{-1}\\\\ (\sqrt[n]{x})' &=& \frac{1}{n\cdot x} \cdot x^{ \frac{1}{n} }\\\\ (\sqrt[n]{x})' &=& \frac{ \sqrt[n]{x} }{n\cdot x} \end{array} \\\\\\ \boxed{ ~~(\sqrt[n]{x})' ~=~ \dfrac{ \sqrt[n]{x} }{n\cdot x} ~=~ \dfrac{1}{ n\cdot \sqrt[n]{x^{n-1} } } ~~ }
Beispiele:
(√x)′ = √x2⋅x = 12⋅√x2−1 = 12⋅√x(3√x)′ = 3√x3⋅x = 13⋅3√x3−1 = 13⋅3√x2(4√x)′ = 4√x4⋅x = 14⋅4√x4−1 = 14⋅4√x3⋯