Wie löst man y'=(1+y)/x
$$y'=\frac{1+y}{x} \quad | \quad y' = \frac{dy}{dx} \\\\
\frac{dy}{dx} = \frac{1+y}{x} \qquad \small{\text{ Trennung der Variablen }} \\\\
\left( \frac{1}{1+y} \right)\ dy = \left( \frac{1}{x} \right)\ dx \\\\
\left( \frac{1}{1+y} \right)\ dy = \left( \frac{1}{x} \right)\ dx \quad | \quad \int\\\\
\int\left( \frac{1}{1+y} \right)\ dy = \int\left( \frac{1}{x} \right)\ dx \qquad \small{\text{ Berechnung der Integrale }} \\\\$$
I.
$$\int\left( \frac{1}{x} \right)\ dx \quad \small{\text{ Wir substituieren: }} x=e^u \qquad dx=e^udu \\\\
\int\left( \frac{1}{x} \right)\ dx = \int\frac{e^u}{e^u}du = \int du=u \quad | \quad u=\ln{(x)}\\\\
\boxed{\int\left( \frac{1}{x} \right)\ dx = \ln{(x)}+ c_1 }$$
II.
$$\int\left( \frac{1}{1+y} \right)\ dy \quad \small{\text{ Wir substituieren: }} y=u-1 \qquad dy=du \\\\
\int\left( \frac{1}{1+y} \right)\ dy = \int\frac{1}{u}du = \ln{(u)} \quad | \quad u=y+1\\\\
\boxed{\int\left( \frac{1}{1+y} \right)\ dy = \ln{(y+1)}+ c_2 }$$
III.
$$\int\left( \frac{1}{1+y} \right)\ dy = \int\left( \frac{1}{x} \right)\ dx \\\\
\ln{(y+1)}+ c_2 = \ln{(x)}+ c_1 \\\\
\ln{(y+1)} = \ln{(x)}+ c_1 - c_2\\\\
\ln{(y+1)} = \ln{(x)}+ c_3 \\\\
\ln{(y+1)} = \ln{(x)}+ c_3 \quad | \quad e^{()}\\\\
y+1 = e^{ \ln{(x)}+ c_3 } \\\\
y+1 = e^{ \ln{(x)}}* e^{c_3} \\\\
y+1 = x*e^{c_3} \\\\
y+1 = x*c \\\\
\boxed{ \boxed{ y = x*c-1 } }$$
danke für die antwort
ja, die dgl heißt so
y' = (1+y)/x
wir sollen die dgl durch separation der variablen lösen - aber die lassen sich bei mir nicht separieren...
dmp
http://de.wikipedia.org/wiki/Trennung_der_Ver%C3%A4nderlichen
Wie löst man y'=(1+y)/x
$$y'=\frac{1+y}{x} \quad | \quad y' = \frac{dy}{dx} \\\\
\frac{dy}{dx} = \frac{1+y}{x} \qquad \small{\text{ Trennung der Variablen }} \\\\
\left( \frac{1}{1+y} \right)\ dy = \left( \frac{1}{x} \right)\ dx \\\\
\left( \frac{1}{1+y} \right)\ dy = \left( \frac{1}{x} \right)\ dx \quad | \quad \int\\\\
\int\left( \frac{1}{1+y} \right)\ dy = \int\left( \frac{1}{x} \right)\ dx \qquad \small{\text{ Berechnung der Integrale }} \\\\$$
I.
$$\int\left( \frac{1}{x} \right)\ dx \quad \small{\text{ Wir substituieren: }} x=e^u \qquad dx=e^udu \\\\
\int\left( \frac{1}{x} \right)\ dx = \int\frac{e^u}{e^u}du = \int du=u \quad | \quad u=\ln{(x)}\\\\
\boxed{\int\left( \frac{1}{x} \right)\ dx = \ln{(x)}+ c_1 }$$
II.
$$\int\left( \frac{1}{1+y} \right)\ dy \quad \small{\text{ Wir substituieren: }} y=u-1 \qquad dy=du \\\\
\int\left( \frac{1}{1+y} \right)\ dy = \int\frac{1}{u}du = \ln{(u)} \quad | \quad u=y+1\\\\
\boxed{\int\left( \frac{1}{1+y} \right)\ dy = \ln{(y+1)}+ c_2 }$$
III.
$$\int\left( \frac{1}{1+y} \right)\ dy = \int\left( \frac{1}{x} \right)\ dx \\\\
\ln{(y+1)}+ c_2 = \ln{(x)}+ c_1 \\\\
\ln{(y+1)} = \ln{(x)}+ c_1 - c_2\\\\
\ln{(y+1)} = \ln{(x)}+ c_3 \\\\
\ln{(y+1)} = \ln{(x)}+ c_3 \quad | \quad e^{()}\\\\
y+1 = e^{ \ln{(x)}+ c_3 } \\\\
y+1 = e^{ \ln{(x)}}* e^{c_3} \\\\
y+1 = x*e^{c_3} \\\\
y+1 = x*c \\\\
\boxed{ \boxed{ y = x*c-1 } }$$