Welcher Term besteht zwischen 1,12,33und 62
$$\\ \boxed{p(n) = a*n^3+b*n^2+c*n+d} \\
p(1)= 1 = a*1^3+b*1^2+c*1+d \\
p(2)= 12 = a*2^3+b*2^2+c*2+d \\
p(3)= 33 = a*3^3+b*3^2+c*3+d \\
p(4)= 62 = a*4^3+b*4^2+c*4+d \\
\hline
(1)\ a+b+c+d=1 \\
(2)\ 8a+4b+2c+d=12\\
(3)\ 27a+9b+3c+d=33\\
(4)\ 64a+16b+4c+d=62\\
\hline
I: (2)-(1): \ 7a+3b+c=11 \\
II:(4)-(3): \ 37a+7b+c+d=29\\
III: (3)-(2): \ 19a+5b+c=21\\
\hline$$
$$III-I: \ 12a+2b=10\\
II-III: \ 18a+2b =8 \\
18a-12a=8-10 \\
6a=-2\\
a=-\frac{1}{3}\\
-\frac{12}{3}+2b=10\\
2b=10+4\\
b=7\\
\hline
-\dfrac{7}{3}+21+c=11\\
c=-\dfrac{23}{3}\\
\hline
-\dfrac{1}{3}+7-\dfrac{23}{3}+d=1\\
-\dfrac{24}{3}+7+d=1 \\
d=2 \\
\hline$$
$$\\ \boxed{p(n) = -\frac{1}{3}*n^3+7*n^2-\frac{23}{3}*n+2} \\\\
p(1) = -8+7+2= 1 \quad \text{ okay!}\\
p(2) = 30-18 = 12 \quad \text{ okay!}\\
p(3) = 65-32 = 33 \quad \text{ okay!}\\
p(4) = 114-52= 62 \quad \text{ okay!}\\$$
Welcher Term besteht zwischen 1,12,33und 62
$$\\ \boxed{p(n) = a*n^3+b*n^2+c*n+d} \\
p(1)= 1 = a*1^3+b*1^2+c*1+d \\
p(2)= 12 = a*2^3+b*2^2+c*2+d \\
p(3)= 33 = a*3^3+b*3^2+c*3+d \\
p(4)= 62 = a*4^3+b*4^2+c*4+d \\
\hline
(1)\ a+b+c+d=1 \\
(2)\ 8a+4b+2c+d=12\\
(3)\ 27a+9b+3c+d=33\\
(4)\ 64a+16b+4c+d=62\\
\hline
I: (2)-(1): \ 7a+3b+c=11 \\
II:(4)-(3): \ 37a+7b+c+d=29\\
III: (3)-(2): \ 19a+5b+c=21\\
\hline$$
$$III-I: \ 12a+2b=10\\
II-III: \ 18a+2b =8 \\
18a-12a=8-10 \\
6a=-2\\
a=-\frac{1}{3}\\
-\frac{12}{3}+2b=10\\
2b=10+4\\
b=7\\
\hline
-\dfrac{7}{3}+21+c=11\\
c=-\dfrac{23}{3}\\
\hline
-\dfrac{1}{3}+7-\dfrac{23}{3}+d=1\\
-\dfrac{24}{3}+7+d=1 \\
d=2 \\
\hline$$
$$\\ \boxed{p(n) = -\frac{1}{3}*n^3+7*n^2-\frac{23}{3}*n+2} \\\\
p(1) = -8+7+2= 1 \quad \text{ okay!}\\
p(2) = 30-18 = 12 \quad \text{ okay!}\\
p(3) = 65-32 = 33 \quad \text{ okay!}\\
p(4) = 114-52= 62 \quad \text{ okay!}\\$$