+0  
 
0
843
5
avatar

we kennt die Richtige ANTWORT

 

58/100=x/20+5.8x/100

 

58=5x+5.8x=10.8x

 19.02.2015

Beste Antwort 

 #5
avatar+14538 
+5

So verstehst du es wohl besser:

$${\frac{{\mathtt{58}}}{{\mathtt{100}}}} = {\frac{{\mathtt{x}}}{{\mathtt{20}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{5.8}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{100}}}}$$                  Jedes Glied der Gleichung  mit 100 malnehmen !

 

58 = 5x + 5,8x                 (   $${\frac{{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{100}}}{{\mathtt{20}}}} = {\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}$$  )

58= 10,8x

$${\mathtt{x}} = {\frac{{\mathtt{58}}}{{\mathtt{10.8}}}} \Rightarrow {\mathtt{x}} = {\mathtt{5.370\: \!370\: \!370\: \!370\: \!370\: \!4}}$$

 

x = $$5,\overline{370}$$         (  x = 5, Periode 370 )

 

Gruß radix !

 19.02.2015
 #1
avatar+14538 
+5

Hallo Anonymous,

0,58 = 0,05x + 0,058x

0,58 = 0,108x

$${\mathtt{x}} = {\frac{{\mathtt{0.58}}}{{\mathtt{0.108}}}} \Rightarrow {\mathtt{x}} = {\mathtt{5.370\: \!370\: \!370\: \!370\: \!370\: \!4}}$$

Gruß radix !

 19.02.2015
 #2
avatar
0

wie find ich x/20  die 5x ?

 19.02.2015
 #3
avatar+14538 
0

$${\frac{{\mathtt{x}}}{{\mathtt{20}}}} = {\frac{{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{100}}}}$$        ich habe mit 5 erweitert  (Zähler und Nenner mal 5 )

$${\frac{{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{100}}}}$$   =  0,05x           ;     $${\frac{{\mathtt{5}}}{{\mathtt{100}}}} = {\frac{{\mathtt{1}}}{{\mathtt{20}}}} = {\mathtt{0.05}}$$

.
 19.02.2015
 #4
avatar
0

Danke Dir Vorerst 

 19.02.2015
 #5
avatar+14538 
+5
Beste Antwort

So verstehst du es wohl besser:

$${\frac{{\mathtt{58}}}{{\mathtt{100}}}} = {\frac{{\mathtt{x}}}{{\mathtt{20}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{5.8}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{100}}}}$$                  Jedes Glied der Gleichung  mit 100 malnehmen !

 

58 = 5x + 5,8x                 (   $${\frac{{\mathtt{x}}{\mathtt{\,\times\,}}{\mathtt{100}}}{{\mathtt{20}}}} = {\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{x}}$$  )

58= 10,8x

$${\mathtt{x}} = {\frac{{\mathtt{58}}}{{\mathtt{10.8}}}} \Rightarrow {\mathtt{x}} = {\mathtt{5.370\: \!370\: \!370\: \!370\: \!370\: \!4}}$$

 

x = $$5,\overline{370}$$         (  x = 5, Periode 370 )

 

Gruß radix !

radix 19.02.2015

1 Benutzer online

avatar