+0  
 
0
727
1
avatar

was ist die stammfunktion von - 1 / 3 x ? bitte um antwort. :)

 13.03.2015

Beste Antwort 

 #1
avatar+14538 
+5

$${f}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)$$          =>       $${F}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{\frac{{{\mathtt{x}}}^{{\mathtt{2}}}}{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{C}}$$

 

Oder so ?

$${f}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}}$$               =>      $${F}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{\frac{{ln}{\left({\mathtt{x}}\right)}}{{\mathtt{3}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{C}}$$

 

Gruß radix !

 14.03.2015
 #1
avatar+14538 
+5
Beste Antwort

$${f}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)$$          =>       $${F}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{\frac{{{\mathtt{x}}}^{{\mathtt{2}}}}{{\mathtt{6}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{C}}$$

 

Oder so ?

$${f}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}}$$               =>      $${F}{\left({\mathtt{x}}\right)} = {\mathtt{\,-\,}}{\frac{{ln}{\left({\mathtt{x}}\right)}}{{\mathtt{3}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{C}}$$

 

Gruß radix !

radix 14.03.2015

1 Benutzer online