$${\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)} = {{\mathtt{3}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}$$ ; $$\left({\left({{\mathtt{3}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}\right)}^{{\mathtt{2}}}\right)$$ = $${{\mathtt{3}}}^{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}$$
= $${{\mathtt{81}}}^{{\mathtt{y}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{x}}}^{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}$$
$${\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)} = {{\mathtt{3}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}$$ ; $$\left({\left({{\mathtt{3}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}\right)}^{{\mathtt{2}}}\right)$$ = $${{\mathtt{3}}}^{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}$$
= $${{\mathtt{81}}}^{{\mathtt{y}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{x}}}^{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{y}}\right)}$$