+0  
 
0
399
1
avatar+200 

Hallo zusammen,

hier kommt eine schwere Knobelaufgabe:

 

Seien a,b,c,d>0. Sei

\(f(x)=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)

Ermittle alle Werte für f(x)!

 

Ich weiß nicht, ob sich diese Aufgabe auch "stur" lösen lässt, es gibt zumindest eine sehr schöne Lösung.

 

Viel Spaß!

 

Grüße

melwei

melwei  03.04.2016
 #1
avatar+200 
0

Hallo zusammen,

Da keiner die Lösung gefunden hat, löse ich die Sache jetzt auf.

 

Wir schätzen f(a,b,c,d) ab. Entfernen wir positive Zahlen aus dem Nenner eines Bruchs, so wird dieser größer.

Es gilt also:

\(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+d}+\frac{d}{c+d}>\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}=f(a,b,c,d)\)

Also:

\(\frac{a+b}{a+b}+\frac{c+d}{c+d}=2>f(a,b,c,d)\)

 

Für eine Abschätzung in die andere Richtung können wir Werte zum Nenner hinzufügen:

\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}<\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}=f(a,b,c,d)\)

Also:

\(\frac{a+b+c+d}{a+b+c+d}=1<f(a,b,c,d)\)

Nun zeigen wir, dass f(a,b,c,d) auch gegen 1 und gegen 2 gehen kann:

 

Wir berechnen f(a,b,c,d) für

\(a,b= \rightarrow 0 \leftarrow\) (So schreibe ich a geht gegen 0, also der kleinste Wert mit a>0)

\(c,d=1\)

Und erhalten:

\(f(a,b,c,d)=\frac{\rightarrow 0 \leftarrow}{\rightarrow 1 \leftarrow}+\frac{\rightarrow 0 \leftarrow}{\rightarrow 1 \leftarrow}+\frac{1}{\rightarrow 2 \leftarrow}+\frac{1}{\rightarrow 2 \leftarrow}=\rightarrow 1 \leftarrow\)

 

Wir berechnen f(a,b,c,d) für

\(a,d= \rightarrow 0 \leftarrow\)

\(b,c=1\)

Und erhalten:

\(f(a,b,c,d)=\frac{\rightarrow 0 \leftarrow}{\rightarrow 2 \leftarrow}+\frac{1}{\rightarrow 1 \leftarrow}+\frac{1}{\rightarrow 1 \leftarrow}+\frac{\rightarrow 0 \leftarrow}{\rightarrow 2 \leftarrow}=\rightarrow 2 \leftarrow\)

 

\(f(a,b,c,d)\) kann also alle Werte x mit 1<x<2 annehmen!

 

Grüße

melwei

melwei  05.04.2016

18 Benutzer online

avatar
avatar

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.