1.)cos alpha+sin alpha*tan alpha=
2.) 1/(1+tan^2 alpha)=
3.)tan alpha/Wurzel(1+tan^2 alpha)=
4.)sin^4 alpha−cos^4 alpha=
4.) sin^4 alpha−cos^4 alpha=
\small{\text{$ \begin{array}{rcl} \sin^4{ (\alpha) } - \cos^4{ ( \alpha ) } \\ &=& - (~ \cos^4{ ( \alpha ) } - \sin^4{ (\alpha) } ~)\\ &=& - (~ ( \cos^2{ ( \alpha ) } - \sin^2{ (\alpha) } ) \cdot ( \cos^2{ ( \alpha ) } + \sin^2{ (\alpha) } ) ~)\\\\ &&$Formeln:\\\\ &&$~\boxed{\mathbf{ \cos^2{ ( \alpha ) } - \sin^2{ (\alpha) } = \cos{(2\cdot\alpha)} }}\\ &&$~\boxed{\mathbf{ \cos^2{ ( \alpha ) } + \sin^2{ (\alpha) } = 1 }}\\\\ \sin^4{ (\alpha) } - \cos^4{ ( \alpha ) }&=&-\cos{(2\cdot\alpha)} \end{array} $}}
4.) sin^4 alpha−cos^4 alpha=
\small{\text{$ \begin{array}{rcl} \sin^4{ (\alpha) } - \cos^4{ ( \alpha ) } \\ &=& - (~ \cos^4{ ( \alpha ) } - \sin^4{ (\alpha) } ~)\\ &=& - (~ ( \cos^2{ ( \alpha ) } - \sin^2{ (\alpha) } ) \cdot ( \cos^2{ ( \alpha ) } + \sin^2{ (\alpha) } ) ~)\\\\ &&$Formeln:\\\\ &&$~\boxed{\mathbf{ \cos^2{ ( \alpha ) } - \sin^2{ (\alpha) } = \cos{(2\cdot\alpha)} }}\\ &&$~\boxed{\mathbf{ \cos^2{ ( \alpha ) } + \sin^2{ (\alpha) } = 1 }}\\\\ \sin^4{ (\alpha) } - \cos^4{ ( \alpha ) }&=&-\cos{(2\cdot\alpha)} \end{array} $}}