Vereinfache:
\(\boxed{~ \text{Potenzierung von Potenzen }~ \begin{array}{lr} \left( a^b \right) ^c &=& a^{b\cdot c} \end{array} ~}\)
1. (n^x)^2 = ?
\(\begin{array}{rcl} (n^x)^2 &=& n^{2x} \end{array}\)
2. (a^2n)^n = ?
\(\begin{array}{rcl} (a^{2n})^n &=& a^{2n\cdot n} \\ &=& a^{2n^2} \end{array}\)
3. (y^3)^n+1 = ?
\(\begin{array}{rcl} (y^3)^{n+1} &=& y^{3\cdot (n+1)} \\ &=& y^{3n+3} \end{array}\)
Vereinfache:
\(\boxed{~ \text{Potenzierung von Potenzen }~ \begin{array}{lr} \left( a^b \right) ^c &=& a^{b\cdot c} \end{array} ~}\)
1. (n^x)^2 = ?
\(\begin{array}{rcl} (n^x)^2 &=& n^{2x} \end{array}\)
2. (a^2n)^n = ?
\(\begin{array}{rcl} (a^{2n})^n &=& a^{2n\cdot n} \\ &=& a^{2n^2} \end{array}\)
3. (y^3)^n+1 = ?
\(\begin{array}{rcl} (y^3)^{n+1} &=& y^{3\cdot (n+1)} \\ &=& y^{3n+3} \end{array}\)