+0  
 
+1
318
2
avatar+78 

Guten Tag,

ich habe Probleme folgende Ungleichungen zu lösen.

 

\(\frac{3}{x}-\frac{2}{3x}\le0\)

 

\(\mathbb{L}=(-\infty,0)\)

 

\(\frac{2}{x+1}\le\frac{2}{9}\)

 

\(\mathbb{L}=(-\infty,-1)\cup[8,\infty)\)

 

Wie geht man da am besten vor?

Gruß Terax

Terax  12.03.2018
 #1
avatar+9644 
0

Hallo Terax,

beim Lösen von Ungleichungen geht man vor wie bei Gleichungen mit einem Unterschied: Wird beim Lösen mit einer negativen Zahl multipliziert, dann kehrt sich das Relationszeichen um.

 

 

laugh

Omi67  13.03.2018
 #2
avatar+78 
0

Hallo Omi67, danke für deine Antwort smiley

Könntest du mir evtl. diesen Schritt erklären?

\(\frac{3}{x}-\frac{2}{3x}\le0 \qquad |\cdot3x \\ 9x-6x\le0 \)

 

Ich hätte an dieser Stelle versucht die Subtraktion aufzulösen, wodurch ich auf \(\frac{7}{3x}\le0\) komme, aber das bringt mich auch nicht so recht weiter.

Kleine Korrektur von mir, du hast in der Lösungsmenge die eckige Klammer bei dem Unendlichzeichen falsch herum geschrieben, unendlich kann ja nicht erreicht werden.

Also,

\(\mathbb{L}=]-\infty,0[\)

 

Den ersten Teil der zweiten Aufgabe kann ich soweit nachvollziehen, nur habe ich noch Probleme auf den zweiten Teil der Lösungsmenge zu kommen, also \(\mathbb{L}={\color{red}(-\infty,-1)}\cup[8,\infty)\)

 

Die zweite Aufgabe hatte ich zunächst versucht anders zu rechnen, wo liegt da der Fehler?

 

\(\frac{2}{x+1}\le\frac{2}{9} \qquad |-\frac{2}{9} \\[.5cm] \frac{2}{x+1}-\frac{2}{9}\le0 \qquad | \text{Subtraktion auflösen} \\[.5cm] \frac{2\cdot9-(x+1)\cdot2}{(x+1)\cdot9}\le0 \\[.5cm] \frac{20-2x}{9x+9}\le0 \\[.5cm] 20-2x\le9x+9 \\[.5cm] 12\le11x \\[.5cm] \frac{12}{11}\le x\)

 

Gruß Terax

Terax  13.03.2018

10 Benutzer online

avatar
avatar

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.