+0  
 
+1
455
2
avatar

sin(3y)+sin(2y+ (Pi/3))=0

Ich muss dazu die Lösungsmenge finden, könnt ihr helfen?

Guest 03.12.2017
 #1
avatar+7449 
+1

sin(3y)+sin(2y+ (Pi/3))=0
Ich muss dazu die Lösungsmenge finden.

 

Hallo Gast!

 

\(sin(3y)+sin(2y+ (\pi/3))=0\)

 

Mit den Additionstheoremen lassen sich trigonometrische Funktionen

mit alleinstehendem Argument y erstellen:

 

\(sin(3y)=3 sin(y)-4sin^3(y)\)

 

\(sin(2y) = 2 · sin(y) · cos(y)\)

\(sin(2y)=2\ sin (y)\cdot \sqrt{1-sin^2(y)}\)

 

\(cos(2y) = cos^2(y) - sin^2(y)\)

\(cos(2y) = 1-2\ sin^2(y) \)

 

 

\(sin(X ± Y) = sin(X) · cos(Y) ± sin(Y) · cos(X)\)

\(sin(2y ± \pi/3) = [sin(2y)] · cos(\pi/3) ± sin(\pi/3) · [cos(2y) ]\)

 

 

\(sin(2y ± \pi/3) = [ 2 · sin(y) · cos(y)] · cos(\pi/3)\\ \ ± sin(\pi/3) · [cos^2(y) - sin^2(y)]\)

 

\([sin(3y)]+[sin(2y+ (\pi/3))]=0\)

 

\([3 sin(y)-4sin^3(y)]+[2 · sin(y) · cos(y)] · cos(\pi/3)\\ \ ± sin(\pi/3) · [cos^2(y) - sin^2(y)]=0\)

 

\(cos^2 y = 1-sin^2y\\ cos\ y=\sqrt{1-sin^2y}\)

 

Nach dem Ersetzen von cos (y) und cos²(y)  durch die

entsprechenden Terme entsteht eine Gleichung 3. Grades

mit der Variablen sin y.

Morgen geht es weiter.

laugh  !

asinus  04.12.2017
bearbeitet von asinus  04.12.2017
bearbeitet von asinus  05.12.2017
bearbeitet von asinus  06.12.2017
 #2
avatar+20009 
+2

Hallo asinus,

 

aus den Additionstheoremen lassen sich Identitäten ableiten,

mit deren Hilfe die Summe zweier trigonometrischer Funktionen als Produkt dargestellt werden kann:

 

\(\begin{array}{|rcll|} \hline \sin(u) + \sin(v) = 2\cdot \sin(\frac{u+v}{2})\cdot \cos(\frac{u-v}{2}) \\ \hline \end{array}\)

 

Dank dieser Faktorisierung geht der Ansatz zur Lösung recht einfach, doch die Lösungenmenge zu bestimmen

ist doch recht mühsam:

 

\(\begin{array}{|lrcll|} \hline &\sin(3y)+\sin(2y+ \frac{\pi}{3} ) &=& 0 \\\\ &\sin(3y)+\sin(2y+ \frac{\pi}{3}) = 2\cdot \sin\left(\frac{5y+\frac{\pi}{3}}{2}\right)\cdot \cos\left(\frac{y- \frac{\pi}{3}}{2}\right) &=& 0\\ & 2\cdot \sin\left(\frac{5y+\frac{\pi}{3}}{2}\right)\cdot \cos\left(\frac{y- \frac{\pi}{3}}{2}\right) &=& 0 & |~ : 2 \\ &\underbrace{\sin\left(\frac{5y+\frac{\pi}{3}}{2}\right)}_{=0}\cdot \underbrace{\cos\left(\frac{y- \frac{\pi}{3}}{2}\right)}_{=0} &=& 0 \\\\ (1) & \sin\left(\frac{5y+\frac{\pi}{3}}{2}\right) &=& 0 \\ & \Rightarrow \text{Lösungenmenge für } y \\ (2) & \cos\left(\frac{y- \frac{\pi}{3}}{2}\right) &=& 0 \\ & \Rightarrow \text{weitere Lösungenmenge für } y \\ \hline \end{array}\)

 

laugh

heureka  05.12.2017

2 Benutzer online

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.