+0  
 
+1
436
1
avatar

Hallo,

 

kann mir bitte jemand zeigen, wie ich diese Textaufgabe lösen muss?(Bitte ggf. mit Rechnung) 

 

PS: Es handelt sich hier nicht um eine Hausaufgabe. Ich kann nur jetzt nicht fragen, weil noch Ferien sind. :D

Guest 10.08.2017
 #1
avatar+7647 
0

Textaufgabe zu Wendepunkte

 

Hallo Gast!

 

Zuerst bestimmen wir die Funktionsgleichung von f "(x).

f "(x) ist die zweite Ableitung der Stammfunktion f(x).

 

\(f''(x)=ax^3+bx^2+cx+d\)

 

\(P_1\ (0,8;2),\ P_2\ (0;0),\ P_3\ (2;0),\ P_4\ (4;0)\)

 

\(P_1:\ \ 2=0,512a+0,64b+0,8c\ [\cdot 5\ ]\\ P_2:\ \ 0=d\\ P_3:\ \ 0=8a+4b+2c\ [\cdot 2\ ]\\ P_4:\ \ 0=64a+16b+4c\)   \( multipl. (5)\\ \ \\ multipl.(2)\)

 

\(10=2,56a+3,2b+4c\\\color{blue} 0=d\\ 0=16a+8b+4c\\ 0=64a+16b+4c\)                   \((10)\ nach\ rechts\\(4c)\ nach\ links \)

 

\(-4c=2,56a+3,2b-10\\ -4c=16a+8b\\ -4c=64a+16b\)     \(aus\ drei\ Gleichungen\ mach\ zwei\)

 

\(2,56a+3,2b-10=16a+8b\\ 2,56a+3,2b-10=64a+16b\\\)   (add./subtr.)   (-10 bleibt links) 

 

\(-10=13,44a+4,8b\ \ [\times 2\frac{2}{3}]\\ -10=61,44a+12,8b\)        \(multipl. \frac{8}{3}=2,\overline {66}\)

 

\(-26,6\overline6=35,84a+12,8b\\ -10=61,44a+12,8b\ \color{blue} [\ subtr.]\\ ----------- \\ -16,6\overline6=-25,6a\ \color{blue}[\ isoliere\ a\ ]\\ -\frac{833}{50}=-\frac{128}{5}a\\ a=\frac{833}{50}\times\frac{5}{128}=\frac{833}{1280}\\ \)

 

\(a=\frac{833}{1280}=0,65078125\)    

 

 

\(-10=61,44a+12,8b\\ b=-\frac{10+61,44a}{12,8}=-\frac{10+61.44\times 0,65078125}{12,8}\)   \(a\ einsetzen\)

 

\(b=-3,905\)

 

 

\(-4c=16a+8b \ \color{blue}[\ a\ und\ b\ einsetzen\\ -4c=16\times 0,65078125+8\times (-3,905)\\ -4c=-20,8275\)

 

\(c=5,206875\)

 

\(\large f''(x)=ax^3+bx^2+cx+d\)

 

\(\large f''(x)=0,65078125x^3-3,905x^2+5,206875x\)

 

Um zur ersten Ableitung der Stammfunktion f(x),

nämlich f '(x) , zu kommen, wird f ''(x) integriert.

 

Potenzgesetz: \(\int \ x^n\ dx =\frac{1}{n+1}\ x^{n+1}+C\)

 

\(f'=\int f''(x) \, dx +C\)

 

\(f'(x)=\int (0,65078125x^3-3,905x^2+5,206875x)\ \large dx +C\)

 

\(\large f'(x)=\int (\frac{0,65078125x^4}{4}-\frac{3,905x^3}{3}+\frac{5,206875x^2}{2})\ dx +C\)

 

\(\large f'(x)=0,1626953125\ x^4-1,301\overline{66}\ x^3+2,6034376x^2 +C\)

 

Antwort zu Frage a)

Die Steigung der Stammfunktion f(x) nimmt im Bereich {-0,3 < x < 0} ab

und im Bereich {0 < x < 2} zu. Bei {x=0} ist ein Sattelpunkt.

Der Graph ist im Bereich {-0,3 < x < 2} keine Rechtskurve.

 

Antwort zu Frage b)

Der Graph de Stammfunktion hat bei {x=2} eine Wendestelle.

f '(2) ist ein Maximum (größte Steigung), f "(2) = 0.

 

Antwort zu Frage c)

Der Graph der Stammfunktion hat bei {x=0} einen Sattelpunkt.

Erläutert bei Antwort a).

 

Antwort zu Frage d)

Ja, der Graph der Stammfunktion änndertsein Krümmungsverhalten.

Bei {x=0,8} hat f '(x) eine Wendestelle, f "(x) ein Maximum.

 

laugh  !    Für ein Dankeschön wäre ich dankbar.

asinus  11.08.2017
bearbeitet von asinus  11.08.2017
bearbeitet von asinus  11.08.2017
bearbeitet von asinus  11.08.2017
bearbeitet von asinus  11.08.2017
bearbeitet von asinus  11.08.2017
bearbeitet von asinus  12.08.2017
bearbeitet von asinus  12.08.2017

10 Benutzer online

avatar
avatar

Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.