+0  
 
+1
124
3
avatar

Hallo,

 

kann mir bitte jemand zeigen, wie man die Wurzel zerlegen/umformen muss, damit ich es aufleiten kann?

Guest 04.10.2017
Sortierung: 

3+0 Answers

 #1
avatar+7155 
+2

Hallo, kann mir bitte jemand zeigen, wie man die Wurzel zerlegen/umformen muss, damit ich es aufleiten kann?

3 c)  f(x) =\(\sqrt{2x}\)   F(x) =

 

Hallo Gast!

Verwandle die Wurzelfunktion in eine Potenzfunktion.

 

\( f(x)=\sqrt{2x}=\sqrt{2}\cdot x^\frac{1}{2}\)

\(F(x)=\sqrt{2}\cdot \int x^\frac{1}{2}dx=\sqrt{2}\cdot \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C\)

\(F(x)=\sqrt{2}\cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C\)

\(F(x)=\sqrt{2}\cdot\frac{2\sqrt{x^3}}{3}+C\) 

 

\(F(x)=\frac{2}{3}\cdot\sqrt{2x^3}+C\)

 

laugh  !

asinus  05.10.2017
 #2
avatar+4 
+1

Hallo,

 

warum ist eine Zwei im Zähler? Woher kommt die? Und wie kommt der Bruch 2/3 vorne zustande?

 

caswal  05.10.2017
 #3
avatar+7155 
0

Hallo caswal, schön, dass du nun bei uns bist!

 

Wurzeln schreibt man zum Integrieren als Potenzen.

\(\sqrt{a}=\sqrt[2]{a}=a^\frac{1}{2}\\ \sqrt[3]{a}=a^\frac{1}{3}\\ a^\frac{2}{5}=\sqrt[5]{a^2}\\ a^{-\frac{2}{5}}=\frac{1}{\sqrt[5]{a^2}}\)

 

\(\int x^n\ dx= \frac{x^{n+1}}{n+1}+C\\ \int\ x^2\ dx=\frac{x^3}{3}+C\\ \int\ \sqrt[2]{x}\ dx=\int x^\frac{1}{2}\ dx=\frac{x^\frac{^3}{2}}{\frac{3}{2}}+C=\frac{2\sqrt{x^3}}{3}+C\)

 

\(\large \frac{x^\frac{3}{2}}{\frac{3}{2}}=x^\frac{3}{2}\times \frac{2}{3}=\frac{2x^\frac{3}{2}}{3}=\frac{2\times\sqrt{x^3}}{3}\)

Hoffentlich konnte ich helfen.

Gruß laugh  !

asinus  06.10.2017
bearbeitet von asinus  06.10.2017

6 Benutzer online

avatar
avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details