+0

# Seil um den Äquator

0
1416
2
+14538

30.07.2014

#2
+14538
+5

### r + x = r + 100/ (2*pi)           ->   x = 100 / (2*pi)

$${\frac{{\mathtt{100}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}} = {\mathtt{15.915\: \!494\: \!309\: \!189\: \!533\: \!6}}$$

30.07.2014

#1
+3146
0

$$\underset{\,\,\,\,{{\rightarrow {\mathtt{u1, r, u2, x}}}}}{{solve}}{\left(\begin{array}{l}{\mathtt{u1}}={\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{r}}\\ {\mathtt{u2}}={\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}\left({\mathtt{r}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}\right)\\ {\mathtt{u2}}={\mathtt{u1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\end{array}\right)} \Rightarrow \left\{ \begin{array}{l}{\mathtt{u1}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\\ {\mathtt{r}} = {\mathtt{r2}}\\ {\mathtt{u2}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{r2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\\ {\mathtt{x}} = {\frac{{\mathtt{1}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}}\\ \end{array} \right\}$$

x=1/(2*pi) = ca. 16cm

30.07.2014
#2
+14538
+5
Beste Antwort

### r + x = r + 100/ (2*pi)           ->   x = 100 / (2*pi)

$${\frac{{\mathtt{100}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}} = {\mathtt{15.915\: \!494\: \!309\: \!189\: \!533\: \!6}}$$