+0  
 
0
430
2
avatar

Die Anzahl der Gäste G [Personen] in einem Eiscafe ist abhängig von der Temperatur t [C] und lässt sich durch die Funktionsgleichung G(t)=t^-2 + 40t beschreiben (in der Aufgabe steht ursprünglich ^2, aber unser Lehrer meinte, dass das ^-2 heißen müsse). An einem durchschnittlichen Sommertag beträgt die Temperatur 20 Grad Celsius. Sie schwankt jedoch um 3 Grad Celsius. Wie groß ist die Wahrscheinlichkeit, dass an einem durchschnittlichen Sommertag genau 380 Gäste kommen? 

 

Wie berechne ich das? 

 

Für diejenigen, die einen GTR besitzen: Ich weiß, dass ich normalpdf benutzen muss, doch was sind meine Werte? Was ist x value? Die Standardabweichung ist ja 3 Grad Celsius. 

 

Danke im Voraus! 

 12.11.2016
 #2
avatar
0

Es soll die Wahrscheinlichkeit dafür ausgerechnet werden, dass genau 380 Gäste im Eiscafe sein werden. Die Normalverteilung als normalpdf müsste dafür geeignet sein. cdf steht für ein Intervall und pdf für einen genauen Wert

 13.11.2016

28 Benutzer online

avatar