+0  
 
+4
267
3
avatar+690 

Guten Nachmittag,

 

Versucht es zu lösen:

 

6 + 4 = 210

9 + 2 = 711

8 + 5 = 313 

5 + 2 = 37 

7 + 6 = ? 

 

Bin gespannt auf die Ergebnisse!

 20.05.2021
 #1
avatar+2919 
+3

Das Plus-Zeichen hat hier ja offenbar eine andere Bedeutung, als die, die man allgemein kennt. Bin persönlich kein Fan davon, hier noch das Plus-Zeichen zu benutzen - finde eine Schreibweise wie den "Kringel" (also zB. \(6 \circ 4 = 210\)) passender, aber darum soll's hier ja nicht gehen.

 

Prinzipiell gibt es unendlich viele Möglichkeiten, hier eine logische Antwort zu liefern. Man könnte sogar relativ leicht jede beliebige Zahl für's Fragezeichen einsetzen und es gäbe eine sinnvolle Lösung dazu. Auch könnte man für das Pluszeichen sowohl kommutative als auch nicht-kommutative Verknüpfungsvorschriften angeben. Ich liefere nun einen möglichen Ansatz, ihr seid gern eingeladen, diesen irgendwie abzuändern und so neue Lösungen zu erschaffen.

 

Ich wähle (!), dass das Plus die beiden Zahlen immer irgendwie so verknüpfen soll:

 

x + y = ax + bx2 +cy + dy2.    (*)


Dabei sind a, b, c und d feste reelle Zahlen, die es nun noch zu finden gilt.

Die oben angegebenen Gleichungen liefern folgendes Gleichungssystem:

 

6a + 36b + 4a + 16d = 210

9a + 81b + 2c + 4d = 711

8a + 64b + 5c + 25d = 313

5a + 25b + 2c + 4d = 37

 

Lösen dieses Gleichungssystems liefert die (zugegebenermaßen nicht sonderlich schönen) Zahlenwerte für a, b, c und d:

 

a = 95579/114

b = -3440/57

c = -97609/76

d = 11825/76

 

Damit ist unser Fragezeichen gefunden: Für x haben wir den Wert 7 gegeben, für y den Wert 6. Die Werte von a, b, c und d sind auch schon fest. Wir müssen nun nur noch alles in Gleichung (*) einsetzen und erhalten:

 

? = ax + bx2 +cy + dy2 = 46001/57

 

Auf diese Art können nicht nur hochintelligente Menschen, sondern jeder, der ein Gleichungssystem lösen kann, lösen. Ich nehme wohl nicht an, dass das die von KabelEins gesuchte Lösung ist, aber es ist eine Lösung und sie ist zweifellos korrekt. 

 

Ich möchte auch auf einen weiteren, ebenfalls relativ einfachen Ansatz hinweisen: Wir könnten das Plus auch als eine Verknüpfung betrachten, die das zweite Argument (oder auch das erste) völlig ignoriert, also etwa eine Verknüpfung der Form

 

x + y = ax3+bx2+cx+d

 

Auch hier liefern uns die Gleichungen oben ein Gleichungssystem, beziehungsweise Punkte, die auf unserer Polynomfunktion liegen müssen. Wir können hier sogar noch einen Schritt weitergehen: Wenn wir den Grad des Polynoms auf vier erhöhen, also unsere Verknüpfung wie folgt derfinieren:

 

x  + y = ax4+bx3+cx2+dx+e

 

Dann können wir für das Fragezeichen jede beliebige Zahl einsetzen und erhalten (mit den bereits vollständigen vier Gleichugen) fünf lineare Gleichungen, mit denen die Werte für a, b, c, d und e ermittelt werden können. So findet man zu jedem Wert für's Fragezeichen die passende Abbildungsvorschrift, und das sogar ohne die Zahl hinter dem Plus zu beachten. Auch das ist sicherlich nicht das, was sich KabelEins vorgestellt hat, ist aber ein zielführendes und einfaches Rezept. 

 

Beide Wege führen zu einer nicht-kommutativen Vorschrift. Sieht jemand schon, wie man auf sehr ähnliche Weise zu einer kommutativen Verknüpfungsvorschrift kommen kann? 

 

Ich hoff', das beantwortet deine Frage in ausreichendem Maße. Ich würd' mich auch über die Lösung von KabelEins freuen, ist immer nett zu sehen, was sich der Fragesteller dabei gedacht hat.

 20.05.2021
 #2
avatar
+1

Das Ergebnis ist ? = 113.

Hier wird nicht Mathematische Kenntnisse abgefragt, sondern Logisches Denken gefordert.

 

Insgesamt lassen sich aus den 5 Kombinationen 10 Gleichungssysteme erstellen, die es miteinander zu vergleichen gilt.
Die Kombinationen mit der Gleichung 5 +2 = 37 ergeben dabei ein anders Ergebnis als der Rest.
So ergibt eine Kombination aus 6x + 4y = 210; 9x + 2y = 711 und 8x + 5y = 313 für x = 101 und y = -99.
Eingetragen ergibt das 7*101 + 6*(-99) = 113.
Zur Überprüfung können die Gleichungssysteme mit dem Ergebnis erneut bestimmt werden.
Nur durch die Kombination mit 5x + 2y = 35 ergibt das für x und y wieder nicht x = 101 und y = -99.

Ich hoffe ich habe es verständlich darstellen können und habe das richtige Ergebnis mit meiner Methode erhalten.

 21.05.2021
 #3
avatar+690 
0

Das Ergebnis ist 113, danke für eure Antworten!

 21.05.2021

23 Benutzer online