lim x->unendlich f`(x)/g`(x)=(-(8x-1)/(2(4x^2-x))^(3/2))/2 ?
f(x)=-(4x^2-x)^(-1/2)
g(x)=2x
f(x)=-(4x^2-x)^(-1/2) g(x)=2x
$$\small{\text{
$f(x)= - [ (4x^2-x)^{ (-\frac{1}{2}) } ] $ and $g(x)=2x $
}}\\ \\
\small{\text{
$ f'(x) = - \left[ (-\frac{1}{2}) (4x^2-x)^{ (-\frac{1}{2}-1) }*(8x-1) \right]
$
}} \\ \\
\small{\text{
$
f'(x) = (\frac{1}{2}) (4x^2-x)^{ (-\frac{3}{2}) }*(8x-1)
$
}} \\ \\
\small{\text{
$
f'(x) = \dfrac{(8x-1)} {2*(4x^2-x)^{ (1.5)} }$ and $g'(x)=2 $
}} \\ \\
\small{\text{
$
\dfrac{f'(x)}{g'(x)} = \dfrac{(8x-1)} {4*(4x^2-x)^{ (1.5)} }
= \dfrac{(8-\frac{1}{x})} {4*x^{(1.5-1)}(4x-1)^{ (1.5)} }
= \dfrac{(8-\frac{1}{x})} {4*x^{(0.5)}(4x-1)^{ (1.5)} }
$
}} \\ \\
\small{\text{
$
\lim \limits_{x\longrightarrow \infty} \dfrac{(8-\frac{1}{x})} {4*x^{(0.5)}(4x-1)^{ (1.5)} } = 0
$
}}$$
f(x)=-(4x^2-x)^(-1/2) g(x)=2x
$$\small{\text{
$f(x)= - [ (4x^2-x)^{ (-\frac{1}{2}) } ] $ and $g(x)=2x $
}}\\ \\
\small{\text{
$ f'(x) = - \left[ (-\frac{1}{2}) (4x^2-x)^{ (-\frac{1}{2}-1) }*(8x-1) \right]
$
}} \\ \\
\small{\text{
$
f'(x) = (\frac{1}{2}) (4x^2-x)^{ (-\frac{3}{2}) }*(8x-1)
$
}} \\ \\
\small{\text{
$
f'(x) = \dfrac{(8x-1)} {2*(4x^2-x)^{ (1.5)} }$ and $g'(x)=2 $
}} \\ \\
\small{\text{
$
\dfrac{f'(x)}{g'(x)} = \dfrac{(8x-1)} {4*(4x^2-x)^{ (1.5)} }
= \dfrac{(8-\frac{1}{x})} {4*x^{(1.5-1)}(4x-1)^{ (1.5)} }
= \dfrac{(8-\frac{1}{x})} {4*x^{(0.5)}(4x-1)^{ (1.5)} }
$
}} \\ \\
\small{\text{
$
\lim \limits_{x\longrightarrow \infty} \dfrac{(8-\frac{1}{x})} {4*x^{(0.5)}(4x-1)^{ (1.5)} } = 0
$
}}$$