Wie berechne ich die Schnittpunktkoordinaten?
Pkt.-Nr. | y-Koordinate | x-Koordinate |
23 | 3708,24 | 1004,48 |
27 | 3787,27 | 1086,87 |
19 | 3776,30 | 1043,77 |
31 | 3721,47 | 1069,43 |
In der Ebene
Wobei Punkt 19&31 auf einer Gerade liegen und
Punkt 23&27 auf einer anderen Gerade.
Also wie berechne Ich jetzt den Schnittpunkt beider Geraden? :)
Vielen Dank im Vorraus
Wie berechne ich die Schnittpunktkoordinaten?
In der Ebene
Wobei Punkt 19 und 31 auf einer Gerade liegen und Punkt 23 und 27 auf einer anderen Gerade.
Also wie berechne Ich jetzt den Schnittpunkt beider Geraden? :)
\(\begin{array}{rll} &\text{Gegeben sind zwei Geraden, gesucht ist ihr Schnittpunkt } S(y_s, x_s) ? \\ \end{array}\\ \begin{array}{|r|c|r|r|} \hline & Pkt.-Nr. & y-Koordinate & x-Koordinate \\ \hline \text{Gerade 1} \\ \vec{P_{23}} & 23 & 3708,24 & 1004,48 \\ \vec{P_{27}} & 27 & 3787,27 & 1086,87 \\ \vec{b}=\vec{P_{27}}-\vec{P_{23}} & & b_y=79,03 & b_x= 82,39\\ \hline \text{Gerade 2} \\ \vec{P_{19}} & 19 & 3776,30 & 1043,77 \\ \vec{P_{31}} & 31 & 3721,47 & 1069,43\\ \vec{a}=\vec{P_{31}}-\vec{P_{19}} & & a_y = -54,83 & a_x = 25,66\\ \hline \vec{c}=\vec{P_{19}}-\vec{P_{23}} & & c_y= 68,06& c_x = 39,29 \\ \hline \end{array}\)
\(\begin{array}{rcl} &\text{Wie berechne ich die Schnittpunktkoordinaten } S(y_s, x_s)? \\ \end{array}\\ \begin{array}{rcl} \vec{S} &=& \vec{P_{19}}+\lambda \vec{a} \\ \vec{c}+\lambda \vec{a} &=& \mu \vec{b} \quad | \quad \times \vec{b} \\ |\vec{c}\times \vec{b}| +\lambda |\vec{a}\times \vec{b}| &=& \mu |\vec{b}\times \vec{b}| \qquad |\vec{b}\times \vec{b}| = b^2\sin{ (0^{\circ}) } = 0\\ |\vec{c}\times \vec{b}| +\lambda |\vec{a}\times \vec{b}| &=& 0\\ \lambda &=& -\frac{ |\vec{c}\times \vec{b}| } { |\vec{a}\times \vec{b}| } \\ \vec{S} &=& \vec{P_{19}}- \frac{ |\vec{c}\times \vec{b}| } { |\vec{a}\times \vec{b}| }\cdot \vec{a} \\ \vec{S} &=& \binom{y_{19}}{x_{19}}- \frac{ |\binom{c_y}{c_x}\times \binom{b_y}{b_x}| } { |\binom{a_y}{a_x}\times \binom{b_y}{b_x}| }\cdot \binom{a_y}{a_x} \\ \vec{S} &=& \binom{3776,30}{1043,77} - \frac{ |\binom{68,06}{39,29}\times \binom{79,03}{82,39}| } { |\binom{ -54,83}{25,66}\times \binom{79,03}{82,39}| } \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77}- \frac{ 68,06 \cdot 82,39 - 39,29 \cdot (79,03) } { -54,83 \cdot 82,39 - 25,66 \cdot (79,03) } \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77}- \frac{ 2502,3747 } { -6545,3535 } \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77} +0,3823131478 \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77} + \binom{ -20,9622298935}{9,81015537248} \\ \vec{S} &=& \binom{3755,33777011}{1053,58015537}\\ \end{array}\)
Die y-Koordinate des Schnittpunktes ist 3755,33777011
Die x-Koordinate des Schnittpunktes ist 1053,58015537
Hallo,
das sind wirklich idiotische Koordinaten !
Gerade (1) g(1) = 0,959 x + 2744,724
Gerade (2) g(2) = 2,137 x + 6006,616
g(1) = g(2) setzen => Schnittpunkt S ( -2770,018 / 87,672 )
Gruß radix !
Wie berechne ich die Schnittpunktkoordinaten?
In der Ebene
Wobei Punkt 19 und 31 auf einer Gerade liegen und Punkt 23 und 27 auf einer anderen Gerade.
Also wie berechne Ich jetzt den Schnittpunkt beider Geraden? :)
\(\begin{array}{rll} &\text{Gegeben sind zwei Geraden, gesucht ist ihr Schnittpunkt } S(y_s, x_s) ? \\ \end{array}\\ \begin{array}{|r|c|r|r|} \hline & Pkt.-Nr. & y-Koordinate & x-Koordinate \\ \hline \text{Gerade 1} \\ \vec{P_{23}} & 23 & 3708,24 & 1004,48 \\ \vec{P_{27}} & 27 & 3787,27 & 1086,87 \\ \vec{b}=\vec{P_{27}}-\vec{P_{23}} & & b_y=79,03 & b_x= 82,39\\ \hline \text{Gerade 2} \\ \vec{P_{19}} & 19 & 3776,30 & 1043,77 \\ \vec{P_{31}} & 31 & 3721,47 & 1069,43\\ \vec{a}=\vec{P_{31}}-\vec{P_{19}} & & a_y = -54,83 & a_x = 25,66\\ \hline \vec{c}=\vec{P_{19}}-\vec{P_{23}} & & c_y= 68,06& c_x = 39,29 \\ \hline \end{array}\)
\(\begin{array}{rcl} &\text{Wie berechne ich die Schnittpunktkoordinaten } S(y_s, x_s)? \\ \end{array}\\ \begin{array}{rcl} \vec{S} &=& \vec{P_{19}}+\lambda \vec{a} \\ \vec{c}+\lambda \vec{a} &=& \mu \vec{b} \quad | \quad \times \vec{b} \\ |\vec{c}\times \vec{b}| +\lambda |\vec{a}\times \vec{b}| &=& \mu |\vec{b}\times \vec{b}| \qquad |\vec{b}\times \vec{b}| = b^2\sin{ (0^{\circ}) } = 0\\ |\vec{c}\times \vec{b}| +\lambda |\vec{a}\times \vec{b}| &=& 0\\ \lambda &=& -\frac{ |\vec{c}\times \vec{b}| } { |\vec{a}\times \vec{b}| } \\ \vec{S} &=& \vec{P_{19}}- \frac{ |\vec{c}\times \vec{b}| } { |\vec{a}\times \vec{b}| }\cdot \vec{a} \\ \vec{S} &=& \binom{y_{19}}{x_{19}}- \frac{ |\binom{c_y}{c_x}\times \binom{b_y}{b_x}| } { |\binom{a_y}{a_x}\times \binom{b_y}{b_x}| }\cdot \binom{a_y}{a_x} \\ \vec{S} &=& \binom{3776,30}{1043,77} - \frac{ |\binom{68,06}{39,29}\times \binom{79,03}{82,39}| } { |\binom{ -54,83}{25,66}\times \binom{79,03}{82,39}| } \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77}- \frac{ 68,06 \cdot 82,39 - 39,29 \cdot (79,03) } { -54,83 \cdot 82,39 - 25,66 \cdot (79,03) } \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77}- \frac{ 2502,3747 } { -6545,3535 } \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77} +0,3823131478 \cdot \binom{ -54,83}{25,66} \\ \vec{S} &=& \binom{3776,30}{1043,77} + \binom{ -20,9622298935}{9,81015537248} \\ \vec{S} &=& \binom{3755,33777011}{1053,58015537}\\ \end{array}\)
Die y-Koordinate des Schnittpunktes ist 3755,33777011
Die x-Koordinate des Schnittpunktes ist 1053,58015537