Ein leeres Becken wird über ein Zulaufsrohr mit Wasser gefüllt. Dabei steige 5 s lang die Zulaufsgeschwindigkeit gleichmäßig bis auf 10 l/s an und bleibt anschließend 20 s lang konstant. Dann wird das Zulaufsrohr geschlossen und ein Abfluss geöffnet, aus dem das Wasser mit konstanter Geschwindigkeit von 5 l/s ausströmt. Stelle den Zusammenhang graphisch dar und bestimme die im Becken vorhandene Wassermenge nach 5 s, nach 25 s und nach 60 s.
Integralrechnung
Bestimme die im Becken vorhandene Wassermenge nach 5 s, nach 25 s und nach 60 s.
Hallo Gast!
Die nach den angegebenen Zeiten vorhandenen Wasservolumina entsprechen den bestimmten Integralen mit den angegebenen Grenzen der Funktionenen \(f_1(t),\ \dot v_{5\to 25}\ und\ f_3(t).\)
\(\nearrow \) \(\to\) \(\searrow \)
\(M_{H_2O}=\int\limits_{0}^{ 5} f_1 \ \mathrm{d}t+\int\limits_{5}^{ 25} \dot v_{(5\to 25)} \ \mathrm{d}t+\int\limits_{25}^{ 60} f_3(x) \ \mathrm{d}t\)
\(f_1(t)=\dot v=\dfrac{2l\cdot t}{s^2}\\ f_2= \dot v_{5\to 25}=\frac{10l}{s}\\ f_3(t)= \dot v=m(t-t_1)+\dot v_{25}\ (Punkt-Richtungs-Gleichung)\\ f_3(t)= \dot v=-\frac{1l\ }{5s^2}(t-25s)+\frac{10l}{s}\\ f_3(t)= \dot v=-\frac{1l\cdot t}{5s^2}+\frac{25ls}{5s^2}+\frac{10l}{s}\\ f_3(t)= \dot v=-\frac{1l\cdot t}{5s^2}+\frac{15l}{s}\)
\(V=\int\limits_{0}^{ 5}\dfrac{2l\cdot t}{s^2}\ dt +\int\limits_{5}^{ 25} \frac{10l}{s}\ dt+\int\limits_{25}^{ 60}(-\frac{1l\cdot t}{5s^2}+\frac{15l}{s})\ dt\)
\(V=\ _{0}^{5}[ \frac{l\cdot t^2}{s^2}]+\ _5^{25}[ \frac{10lt}{s}] +\ _{25}^{60}[ -\frac{lt^2}{10s^2}+\frac{15lt}{s}]\)
\(V=[25l-0]+[250l-50l]+[900l-12l-(375l-5l)]\\ V={\color{blue}25l}+{\color{blue}200l}+\color{blue}370l\\ \color{blue}V=593l\)
Im Becken befinden sich nach 5 Sekunden 25 Liter Wasser.
Im Becken befinden sich nach 25 Sekunden 225 Liter Wasser.
Im Becken befinden sich nach 60 Sekunden 593 Liter Wasser.