+0  
 
0
335
4
avatar

Integral von e^(-x^2)

Guest 10.05.2017
Sortierung: 

4+0 Answers

 #1
avatar
0

Naja eigentlich kannst du e^(-x^2) auch als e^-2x (oder ist das "-x" in Klammern? Dann wäre es e^2x) darstellen. Und das solltest du doch hinbekommen :p 

Gast 10.05.2017
 #2
avatar
0

e^(-x^2) ist nicht e^(-2x)

(e^-x)^2 wäre e^(-2x)

Gast 11.05.2017
 #3
avatar
0

kann man so nicht integrieren. siehe error function, Gaußsche Fehlerfunktion. so ein ausdruck kommt auch im zusammenhang mit der Gaußschen Glockenkurve (Normalverteilung) vor. dafür gibt es Phi- Tabellen, um die Wahrscheinlichkeiten abzulesen, weil man es so nicht ausrechnen kann

Gast 11.05.2017
 #4
avatar+19376 
+2

Integral von e^(-x^2)

 

Die Exponentialfunktion als Reihe: \(e^{x}=\sum \limits_{k=0}^\infty{\frac {x^{k}}{k!}}={\frac {x^{0}}{0!}}+{\frac {x^{1}}{1!}}+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots \)

 

Die Exponentialfunktion als Reihe von: \(\begin{array}{|rcll|} \hline e^{(-x^2)} &=& \sum \limits_{k=0}^\infty {\frac {(-x^2)^{k}} {k!} } \\ &=& \sum \limits_{k=0}^\infty {\frac {(-1)^kx^{2k} }{k!}} \\ \hline \end{array}\)

 

Jeder Summand wird für sich integriet:

\(\begin{array}{|rcll|} \hline \int e^{(-x^2)}\ dx &=&\int \Big( \sum \limits_{k=0}^\infty {\frac {(-1)^kx^{2k} }{k!}} \Big) \ dx \\ &=& \sum \limits_{k=0}^\infty\frac{(-1)^k x^{1+2k}}{(1+2k)k!} \\ \hline \end{array}\)

 

laugh

heureka  11.05.2017
bearbeitet von heureka  11.05.2017
bearbeitet von heureka  11.05.2017

10 Benutzer online

avatar
Neue Datenschutzerklärung (Mai 2018)

Wenn Sie Cookies für diese Webseite durch Bestätigung der nachfolgenden Schaltfläche akzeptieren, dann verwendet diese Webseite eigene Cookies und Cookies von Google Inc. ("Google") um die Nutzung unseres Angebotes zu ermöglichen und Google Online Werbung (Adsense) anzuzeigen und zu personalisieren. Bitte besuchen Sie unsere Cookie Bestimmungen, unsere Datenschutzerklärung und die Datenschutzerklärung von Google um mehr zu erfahren, auch dazu, wie Sie Cookies deaktivieren und der Bildung von Nutzungsprofilen durch Google widersprechen können.