+0  
 
+1
654
2
avatar

Kann mir jemand bei dieser Aufgabe weiterhelfen?

Es wäre sehr lieb, wenn man es  Schitt für Schritt aufschreiben könnte um es besser nachvollziehen zu können.

Danke im Voraus. 

 

 

http://fs5.directupload.net/images/170920/mr5p5usf.jpg

 20.09.2017
bearbeitet von Gast  20.09.2017
 #1
avatar+23557 
+1

[Hilfe]Vereinfachen Sie folgende beiden Ausdrücke:

 

 

5.1

\(\begin{array}{|rcll|} \hline && \dfrac{1}{1-\frac{1}{p}} - \dfrac{1}{p-1} \\\\ &=& \dfrac{1}{\frac{p}{p}-\frac{1}{p}} - \dfrac{1}{p-1} \\\\ &=& \dfrac{1}{\frac{p-1}{p}} - \dfrac{1}{p-1} \\\\ &=& \dfrac{p}{p-1} - \dfrac{1}{p-1} \\\\ &=& \dfrac{p-1}{p-1} \\\\ &=& 1 \\ \hline \end{array}\)

 

 

5.2

\(\begin{array}{|rcll|} \hline && \dfrac{ \left(-\frac{1}{2}\right)^{-3} \left(\frac{3}{4}\right)^2 x^2 y } { \left(\frac{2}{3}\right)^{-2} \left(-\frac{1}{2}\right) \left(x y\right)^{-2} } \\\\ &=& \dfrac{ \left(\frac{3}{4}\right)^2\left(\frac{2}{3}\right)^{2} x^2 y \left(x y\right)^{2} } { \left(-\frac{1}{2}\right)^{3} \left(-\frac{1}{2}\right) } \\\\ &=& \dfrac{ \left(\frac{3}{4}\right)^2\left(\frac{2}{3}\right)^{2} x^2 y x^2y^2 } { \left(-\frac{1}{2}\right)^{3} \left(-\frac{1}{2}\right)^{1} } \\\\ &=& \dfrac{ \left(\frac{3}{4}\right)^2\left(\frac{2}{3}\right)^{2} x^{2+2} y^{1+2} } { \left(-\frac{1}{2}\right)^{3+1} } \\\\ &=& \dfrac{ \left(\frac{3}{4}\right)^2\left(\frac{2}{3}\right)^{2} x^{4} y^{3} } { \left(-\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ \left(\frac{3}{4}\right)^2\left(\frac{2}{3}\right)^{2} x^{4} y^{3} } { \left(-1 \right)^4 \left(\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ \left(\frac{3}{4}\right)^2\left(\frac{2}{3}\right)^{2} x^{4} y^{3} } { 1\cdot \left(\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ \frac{3^2}{4^2} \cdot \frac{2^2}{3^2} \cdot x^{4} y^{3} } { \left(\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ \frac{2^2}{4^2} x^{4} y^{3} } { \left(\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ \left(\frac{2}{4}\right)^2 x^{4} y^{3} } { \left(\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ \left(\frac{1}{2}\right)^2 x^{4} y^{3} } { \left(\frac{1}{2}\right)^{4} } \\\\ &=& \dfrac{ x^{4} y^{3} } { \left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{-2} } \\\\ &=& \dfrac{ x^{4} y^{3} } { \left(\frac{1}{2}\right)^{4-2} } \\\\ &=& \dfrac{ x^{4} y^{3} } { \left(\frac{1}{2}\right)^{2} } \\\\ &=& \dfrac{ x^{4} y^{3} } { \frac{1}{2^2}} \\\\ &=& 2^2x^{4} y^{3} \\\\ &=& 4 x^{4} y^{3} \\ \hline \end{array}\)

 

laugh

 20.09.2017
 #2
avatar
+1

Vielen Dank! Aber ich verstehe manche Schritte immer noch nicht ganz, wieso z.B. ein bestimmter Schritt gemacht wird also die Zusammenhänge zwischen den Rechenschritten

 20.09.2017

28 Benutzer online

avatar
avatar
avatar