+0  
 
0
1110
2
avatar
Gleichung nach f auflösen
 01.02.2015

Beste Antwort 

 #2
avatar+14538 
+5

Hallo Anonymous,

könnte es die Linsengleichung sein ?       $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{1}}}{{\mathtt{g}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{b}}}}$$

Dann so :                                                $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{b}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{g}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}$$        

                                                                  $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{\left({\mathtt{b}}{\mathtt{\,\small\textbf+\,}}{\mathtt{g}}\right)}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}$$

dann "kippen"    =>                                                    $${\mathtt{f}} = {\frac{{\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}}{\left({\mathtt{g}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}\right)}}$$

 

Gruß radix !

 02.02.2015
 #1
avatar+12530 
0

Wie heißet die Gleichung????

 01.02.2015
 #2
avatar+14538 
+5
Beste Antwort

Hallo Anonymous,

könnte es die Linsengleichung sein ?       $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{1}}}{{\mathtt{g}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{b}}}}$$

Dann so :                                                $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{b}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{g}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}$$        

                                                                  $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{\left({\mathtt{b}}{\mathtt{\,\small\textbf+\,}}{\mathtt{g}}\right)}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}$$

dann "kippen"    =>                                                    $${\mathtt{f}} = {\frac{{\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}}{\left({\mathtt{g}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}\right)}}$$

 

Gruß radix !

radix 02.02.2015

2 Benutzer online