könnte es die Linsengleichung sein ? $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{1}}}{{\mathtt{g}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{b}}}}$$
Dann so : $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{b}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{g}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}$$
könnte es die Linsengleichung sein ? $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{1}}}{{\mathtt{g}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{b}}}}$$
Dann so : $${\frac{{\mathtt{1}}}{{\mathtt{f}}}} = {\frac{{\mathtt{b}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{g}}}{\left({\mathtt{g}}{\mathtt{\,\times\,}}{\mathtt{b}}\right)}}$$