f(x)= (x^2-3)/(x+4) ;
P(6/? )
Gleichung der Tangente in P an die Kurve ?
$$f(x)= \dfrac{(x^2-3) } { (x+4) } \qquad x_p = 6 \quad y_p = ? \\
y_p = f(x_p)=f(6)= \dfrac{(6^2-3) } { (6+4) } = \dfrac{33}{10}= 3.3\\
\boxed{y_p = 3.3} \\\\
f'(x)= \dfrac{ 2x(x+4)-(x^2-3)*1 } { (x+4)^2 }\\
m_{\small{\text{Tangente}}} =f'(x_p)=
\small{\text{$
f'(6)=\dfrac{2*6(6+4)-(6^2-3)*1}{(6+4)^2 }=\dfrac{12*10-33}{10^2}=\dfrac{120-33}{100}=0.87$}}\\
\boxed{m_{\small{\text{Tangente}}}=0.87}\\\\
b_{\small{\text{Tangente}}}\ ?\\
y_p = m_{\small{\text{Tangente}}} * x_p+b_{\small{\text{Tangente}}}\\
b_{\small{\text{Tangente}}}= y_p-m_{\small{\text{Tangente}}} *x_p\\
b_{\small{\text{Tangente}}}=3.3-0.87*6\\
\boxed{b_{\small{\text{Tangente}}}=-1.92}\\\\
\small{\text{
Die Gleichung der Tangente am Punkt $P(6/3.3)$ lautet:
}}\\
\boxed{y=0.87x-1.92}$$