+0  
 
+1
500
3
avatar+109 

Das ist auch so eine Aufgabe, wo mir der Plan fehlt:

a)  

Welches Volumen hat der Rotationskörper, der durch die Rotation der Funktionskurve von             

\(f∶\ \left[0\ \ast\frac{\pi}{2}\right]\)

-> R,  f(x) = cos x, um die x-Achse entsteht?

 

b)     

Berechnen sie den Inhalt der Fläche, die von den Funktionskurven der beiden Funktionen

g(x) =  \(\frac{1}{1+x^2} - \frac{1}{2} \)

und h(x) = x² -1 eingeschlossen wird.

 

Gruss Tommy

Kekel  03.01.2018
 #1
avatar+7400 
+1

Guten Morgen Tommy!

 

Zunächst a) :

Welches Volumen hat der Rotationskörper,

der durch die Rotation der Funktionskurve von :      \(f∶\ \left[0\ \ast\frac{\pi}{2}\right]\)     

-> R,  f(x) = cos x, um die x-Achse entsteht?

 

Ein Tortenstückchen aus dem Rotationskörper:

Die Breite ist dφ.

Die Seitenflächen sind

\(A=\int_{0}^{\frac{\pi}{2}} \! cos(x) \, dx \)   \(=\ _0^{\frac{\pi}{2}}\ | sin(x) | \) \(=\ sin(\frac{\pi}{2})-sin(0)=1-0=1\)

\(A=1\)

 

Das Volumen des Tortenstückchens ist

\(dV=\frac{1}{2}\times A\times dφ=\frac{1}{2}\times1\times dφ\\\color{blue} dV=\frac{1}{2}\times dφ\)

 

Das Volumen des Rotationskörpers ist

\(V=\int_{0}^{2\pi} \! dV \, =\int_{0}^{2\pi} \! \frac{1}{2} \, dφ\) \(=\ _0^{\frac{\pi}{2}}\ | \frac{1}{2}φ | =\frac{\pi}{4}-0=\frac{\pi}{4}\)

\(\large V=\frac{\pi}{4}\) 

Entschuldigung! Ich habe die Fläche um die y-Achse gedreht.

Danke Omi67 für die Richtigstellung!

 

b) kommt etwas später.

Gruß     laugh  !

asinus  05.01.2018
bearbeitet von asinus  06.01.2018
 #2
avatar+9520 
+1

Stelle Dir vor, die gelbe Fläche rotiert um die x-Achse. Der durchstreifte Raum beschreibt das gesuchte Volumen.

Der Körper sieht dann so aus:

Zur Volumenberechnung brauchst Du zwei Formeln.

laugh

Omi67  05.01.2018
 #3
avatar+9520 
+1

 

b)     

Berechnen sie den Inhalt der Fläche, die von den Funktionskurven der beiden Funktionen

g(x) und h(x) eingeschlossen wird.

 

Die gelbe Fläche ist die eingeschlossene Fläche, Man erkennt, dass die Integrationsgrenze -1 und 1 sind.

Man darf sie aber nicht einfach so aus der Zeichnung ablesen, sondern man muss sie berechnen.

 

laugh

Omi67  05.01.2018

19 Benutzer online

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.