+0  
 
0
242
4
avatar

Hi, ich habe eine Frage: Bestimmen Sie ein ganzzahliges Intervall [x;x+1], in welchem das Gefälle von f den Wert -0,25 annimmt. f(x)= 6xe^(-0,25x)

 

Wie geht man an diese Augabe heran/ kann man diese beantworten? Wenn ja, wie?

Vielen Dank!

Guest 29.03.2017
Sortierung: 

4+0 Answers

 #1
avatar+211 
+1

"Gefälle" bedeutet ja, dass es um die Steigung der Funktion geht, die Ableitung ist also schonmal nützlich. Zunächst überlege ich mir also, wo die Ableitung den Wert -0,25 annimmt:

\(f(x) = 6x\cdot e^{-0,25x} \\ \Rightarrow f'(x) = 6 \cdot e^{-0,25x} + 6x \cdot e^{-0,25x} \cdot (-0,25) \\ =(6-1,5x)e^{-0,25x} \\ \\ (6-1,5x)e^{-0,25x} \stackrel{!}{=} -0,25\)

 

Diese Gleichung hat zwar eine Lösung, die zu bestimmen ist mit Abi-Mitteln aber meines Wissens nach nicht lösbar. 

Was man aber sieht ist, dass die Ableitung f' bei x=4 eine Nullstelle hat. Einsetzen liefert f'(5) =~ -0,43.

Da die Funktion keine Definitionslücke hat, muss die Ableitung zwischen x=4 und x=5 alle Werte zwischen 0 und -0,43 annehmen, insbesondere auch -0,25.

Das Gesuchte Intervall ist also I = [4;5].

 

Ich hoffe, das war nachvollziehbar.

Probolobo  30.03.2017
 #4
avatar
0

Wow vielen lieben Dank! Das ist pefekt! smiley @Omi67 @Probolobo @heureka

Gast 30.03.2017
 #2
avatar+8824 
+1

Um die Steigung an einer Stelle x zu erhalten, benötigt man die erste Ableitung. Diese muss man gleich Null setzen.

In diesem Fall soll die erste Ableitung -0,25 sein (Gefälle) und es muss die Stelle x ermittelt werden. 

Das ergibt eine schwierig zu lösende Gleichung: (6-1,5x)*e(-0,25x) = -0,25. Deshalb habe ich mir folgendes überlegt:

laugh

Omi67  30.03.2017
 #3
avatar+18764 
+2

Hi, ich habe eine Frage: Bestimmen Sie ein ganzzahliges Intervall [x;x+1], in welchem das Gefälle von f den Wert -0,25 annimmt. f(x)= 6xe^(-0,25x)

 

 

Es gibt zwei Intervalle:

 

1. Intervall [4; 5] mit x = 4,515344

2. Intervall [17; 18] mit x = 17,610364

 

Man kann diese beiden Werte für x mit Hilfe der Lambert'schen W Funktion (W) finden.

\(x = \dfrac{1-W(-\frac{e}{24} )} {0,25}\)

 

Der Link: http://www.had2know.com/academics/lambert-w-function-calculator.html

 

Die Berechnung:

 

 

laugh

heureka  30.03.2017

24 Benutzer online

avatar
avatar
avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details