+0  
 
+1
67
2
avatar+15 

hi, kann mir jemand den Rechenweg folgender Aufgabe erklären?:

Ein rechteckiges Stück Pappe mit den Seitenlängen 20cm und 32cm wird jeweils an den Ecken parallel zu den Seiten eingeschnitten und anschließend zu einem oben offenen Karton gefaltet. Das Volumen soll möglichst groß werden. Wie sind die Abmessungen zu wählen?

Lisa18  06.04.2018
Sortierung: 

2+0 Answers

 #1
avatar+9250 
+1

Die anderen Aufgaben löse ich später.

laugh

Omi67  06.04.2018
 #2
avatar+7257 
0

Extremwertprobleme

Ein rechteckiges Stück Pappe mit den Seitenlängen 20cm und 32cm wird jeweils an den Ecken parallel zu den Seiten eingeschnitten und anschließend zu einem oben offenen Karton gefaltet. Das Volumen soll möglichst groß werden. Wie sind die Abmessungen zu wählen?

 

Hallo Lisa,

wir schneiden an den Ecke Quadrate mit der Seitenlänge x aus dem Stück Pappe.

Die Grundfläche des Kartons ist damit (20cm - 2x)*(32cm - 2x).

Die Höhe des Kartons ist x.

Damit ist das Volumen des Kartons

\(V=f(x)=(20-2x)\cdot (32-2x)\cdot x\\ f(x)=(640-40x-64x+4x^2)\cdot x\\ f(x)=4x^3-104x^2+640x\)

Die Extrema der Volumengleichung f(x) sind an den Nullstellen der 1. Ableitung f'(x).

\(f'(x)=12x^2-208x+640=0\)

                a              b             c

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\\ = {208 \pm \sqrt{43264-30720} \over 24}\\ =\frac{208\pm 112}{24}\\ x_{1}=13\frac{1}{3}cm\ (Unsinn)\\ x_{2}=4cm\)

 

Wir schneiden 4cm-Quadrate aus den Ecken der Pappe.

Das Volumen des entstandenen Kartons ist

 

\(V=(20cm-2x)\cdot (32cm-2x)\cdot 4cm\\ =(20cm-8cm)\cdot (32cm-8cm)\cdot 4cm\\ =12cm\cdot 24cm\cdot 4cm\\ \color{blue}=1152cm^3 \)

 

Das Volumen des entstandenen Kartons 1152 cm³.

 

Gruß

laugh  !

asinus  06.04.2018
bearbeitet von asinus  06.04.2018

34 Benutzer online

avatar
avatar
avatar
avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details