Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
941
1
avatar+15077 

Gegeben seien die Beobachtungsdaten einer Bakterienkultur 3 bzw. 5 Stunden nach Versuchsbeginn mit B(3) = 378 und B(5) = 689. Das Wachstum der Bakterienkultur kann entweder als prozentualer Zuwachs oder als e-Funktion dargestellt werden. Es gilt entweder B(t)=B0qt oder B(t)=B0ekt.

Bestimme für beide Funktionen B0,q  und  k.

 11.07.2020
 #1
avatar+3976 
+1

Auch ein Klassiker - für die Aufgabe bezeichnet t die Zeit in Studen. 

Die beiden gegebenen Funktionswerte liefern uns ein Gleichungssystem:

 

I:   B0q3=378II: B0q5=689

 

Es ist hier klar, dass in jeder Gleichung beide Gleichungsseiten ungleich 0 sind. Daher kann ich die Gleichungen hier auch durcheinander Teilen, nämlich II:I - das sieht dann so aus:

 

B0q5B0q3=689378   |kürzenq2=689378   |.q=6893781,35

 

Diesen Wert können wir nun in eine der beiden Gleichungen einsetzen, um B0 zu bestimmen:

B01,353=378   |:1,353B0=3781,353154

 

Damit ist die Funktion B bestimmt durch B(t) = 154 * 1,35t .

 

Für die zweite Variante nutze ich ein Potenzgesetz:

 

B(t)=1541,35t=154(eln(1,35))t=154eln(1,35)t

 

Damit sind die Parameter vollständig bestimmt: B0 = 154, q = 1,35 ; k = ln(1,35).

 12.07.2020

1 Benutzer online