+0  
 
0
201
1
avatar

Eine Tierpopulation in einem Tierpark hat sich in 5Jahren von 850 auf 1000 Tiere vergrößert. Prüfe welche Art von Wachstum vorliegt,wenn nach acht Jahren 1130 Tiere im Tierpark leben

Guest 06.02.2017
Sortierung: 

1+0 Answers

 #1
avatar
0

Ok man hat fünf Zahlen und eine nicht definierte Formel => es gibt unendlich viele Lösungen :)

 

Mathematische Problem:

f(0 Jahren) =850

f(5 Jahren) = 1000

f(8 Jahren) = 1130

 

erster Ansatz Exponetialfunktion mit konsanter Basis

f(x) =  850 + (1+x)^t      t ... Jahre

nach 5 Jahren x = (1000/850)^(1/5)-1 = 0,033

nach 8 Jahren 1102 = 850 + (1+0,033)^8 => es müssen 28 Tiere im 8. Jahr eingekauft wurden sein! (entsprechend weniger, wenn zwischen 5. und 8. Jahr angeschafft)

 

zweiter Ansatz Exponetialfunktion mit linar wachsender Basis

 

f(t) = 850 (1 +(mt+n))^t

nach 5 Jahren 0,033 (ansatz von oben)

nach 8 Jahren 0,036

0,033=m * 5 +n

0,036 = m * 8 + n

=>0,036 = m*8 + 0,033 - m * 5

m=0,001

n=0,028

 

Die gesuchte Funktion ist f(x) = 850 * ( 1 + (0,001*t+0,028))^t

 

Nun da man einmal eine Funktion in eine andere gesetzt hat, kann man das auch mit beliebig anderen Kombinationen machen, wenn man den will. Das würde aber hier zuweit führen. Wie du siehst (erahnen kannst) ist diese Aufgabe nicht eindeutig zubeantworten, die Datengrundlage ist einfach zu Dünn.

Gast 06.02.2017

10 Benutzer online

avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details