+0  
 
+1
359
2
avatar

\(2pq =< (p^2/E) + Eq^2 \)

 

p,q element R;  E>0

 

davon einen direkten und widerspruchs beweis

Guest 02.11.2017
 #1
avatar+7348 
0

\(2pq =< (p^2/E) + Eq^2\)

p,q element R;  E>0

Davon einen direkten und Widerspruchs- Beweis

 

\(2pq \le (p^2/E) + Eq^2\)

 

\(0 \le p^2/E-2q\cdot p + Eq^2\)

 

\(0\le (p-p_1)(p-p_2) \)

 

\(f(p)=\frac{1}{E}p^2-2q\cdot p + Eq^2=0\)

              a            b              c

\(p = {-b \pm \sqrt{b^2-4ac} \over 2a}\)      

\(\LARGE p = {2q \pm \sqrt{4q^2-4\cdot \frac{1}{E}\cdot Eq^2} \over \frac{2}{E}}\)      

\(\LARGE p = {2q \pm \sqrt{4q^2(1- \frac{E}{E})} \over \frac{2}{E}}\)

\(\LARGE p = {2q \pm2q\sqrt{0} \over \frac{2}{E}}\)

 

\(\Large p = Eq \)

 

 

\(0\le (p-p_1)(p-p_2) \)

\(0\le (p-Eq)(p-Eq) \)

\(0\le (p-Eq)^2\\ 0\le p-Eq\\ Eq \le p\\ E \le \frac{p}{q}\)

 

Irgendwo ist da der Wurm drin.

Bis bald

laugh  !

asinus  04.11.2017
 #2
avatar+7348 
0

\(2pq =< (p^2/E) + Eq^2\)

p,q element R;  E>0

Davon einen direkten und Widerspruchs- Beweis

 

Neuer Versuch einer Lösung

 

\(2qp \le p^2/E + Eq^2\)                          [ -2qp

\(0\le (p^2/E)-2q\cdot p + Eq^2\)            [ \(\times E\)

                                        \(\ \small (E>0, kein\ Wechsel\ beim\ Vergleichszeichen) \)

                                         \( \small (bei \ E<0, wechselt\ das\ Vergleichszeichen) \)

\(0\le f(p)=p^2-2qE\cdot p + E^2q^2\) [ qudrat. Gleichung nach p auflösen

 

\(p^2-2qE\cdot p + E^2q^2=0\)

           b                 c

\(p=-\frac{b}{2}\pm\sqrt{(\frac{b}{2})^2-c}\)

\(\large p=-q\pm\sqrt{q^2-E^2q^2}\)

\(p=-q\pm\sqrt{q^2(1-E^2)}\)

\(p=-q\pm q\sqrt{1-E^2}\)

\(p=q\cdot (\pm\sqrt{1-E^2}-1)\)

 

\(-1\le E\le1\)

 

Die Bedingung für die gegebene Gleichung mit E > 0 ist unkorrekt.

\(-1\le E \le0\) passt ebenfalls zur oben dargestellten Gleichung.

q.e.d.

 

Was sollte eigentlich bewiesen werden?  

laugh  ! 

asinus  04.11.2017
bearbeitet von asinus  04.11.2017
bearbeitet von asinus  04.11.2017

16 Benutzer online

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.