+0  
 
0
272
2
avatar+10 

Hallo, ich verstehe das Determinantenverfahren eigentlich sehr gut und hatte bis jetzt keine Probleme...aber nun verstehe ich nicht wie das mit Durch gehen soll. Bisher hatte ichs immer nur mit Mal zu tun :).

 

x/3+y=7/8

x/6+y/5=1/4

 

kann mir da jemand helfen?

Die Lösung ist: (x und y)=(0,75 und 0,625) wie komm ich dahin?

Danke LG

Neptunresident  06.04.2016
 #1
avatar+14536 
0

Guten Abend !

 

x/3+y=7/8

x/6+y/5=1/4

 

Mein Tipp :  (Hauptnenner!!)

multipliziere die 1. Gl. mit  24    =>       \(8x+24y=21\)

 

multipliziere die 2, Gl. mit  60    =>        \(10x+12y=15\)

 

Dann läuft alles wie bekannt :              \(D=-144\)

 

                                                                \(D_{x}=-108\)           \(D_{y}=-90\)

\(x=0,75\)        \(y=0,625\)

 

Gruß radix smiley !

radix  06.04.2016
 #2
avatar+20148 
0

Hallo, ich verstehe das Determinantenverfahren eigentlich sehr gut und hatte bis jetzt keine Probleme...aber nun verstehe ich nicht wie das mit Durch gehen soll. Bisher hatte ichs immer nur mit Mal zu tun :).

x/3+y=7/8

x/6+y/5=1/4

 

1. Die Aufgabe:

\(\begin{array}{rcll} \frac13 \cdot x + 1 \cdot y &=& \frac78 \\ \frac16 \cdot x + \frac15 \cdot y &=& \frac14 \\ \end{array}\)

 

2. Die Nennerdeterminante D

\(\begin{array}{rcll} D &=& \begin{vmatrix} \frac13 & 1 \\ \frac16 & \frac15 \end{vmatrix} \\ &=& \frac13 \cdot \frac15 - \frac16 \cdot 1 \\ &=& \frac{1}{15} - \frac16 \\ &=& \frac{6-15}{15\cdot 6} \\ &=& \frac{-9}{90} \\ \mathbf{ D } & \mathbf{=} & \mathbf{ -\frac{1}{10} } \end{array}\)

 

3. x?

\(\begin{array}{rcll} x = \frac{D_x}{D} &=& \frac{ \begin{vmatrix} \frac78 & 1 \\ \frac14 & \frac15 \end{vmatrix} } {D}\\ &=& \frac{ \frac78 \cdot \frac15 - \frac14 \cdot 1 } { -\frac{1}{10} }\\ &=& \frac{ \frac{7}{40} - \frac14 } { -\frac{1}{10} }\\ &=& -10\cdot ( \frac{7}{40} - \frac14 ) \\ &=& -\frac{7}{4} + \frac{10}{4} \\ \mathbf{ x } & \mathbf{=} & \mathbf{ \frac{3}{4} } \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 0,75 } \end{array}\)

 

4. y?

\(\begin{array}{rcll} y = \frac{D_y}{D} &=& \frac{ \begin{vmatrix} \frac13 & \frac78 \\ \frac16 & \frac14 \end{vmatrix} } {D}\\ &=& \frac{ \frac13 \cdot \frac14 - \frac16 \cdot \frac78 } { -\frac{1}{10} }\\ &=& \frac{ \frac{1}{12} - \frac{7}{48} } { -\frac{1}{10} }\\ &=& \frac{ \frac{1}{12}\frac44 - \frac{7}{48} } { -\frac{1}{10} }\\ &=& \frac{ \frac{4}{48} - \frac{7}{48} } { -\frac{1}{10} }\\ &=& \frac{ -\frac{3}{48} } { -\frac{1}{10} }\\ &=& \frac{ \frac{3}{48} } { \frac{1}{10} }\\ &=& 10\cdot \frac{3}{48} \\ &=& \frac{30}{48} \\ \mathbf{ y } & \mathbf{=} & \mathbf{ \frac{5}{8} } \\ \mathbf{ y } & \mathbf{=} & \mathbf{ 0,625 } \end{array}\)

 

laugh

heureka  07.04.2016

15 Benutzer online

avatar

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.