+0  
 
+1
355
1
avatar

Gegeben: quadratische Pyramide (a*a), Höhe der Pyramide h=10 cm, Seitenkante=Seite der Grundfläche (S=a)

Gesucht: Höhe einer Seitenfläche (h') und Länge einer Seite der Grundfläche (a)

 

Bitte ausführlich mit Rechenweg. Ich checks nicht!

Vielen Dank im Voraus.

Guest 12.12.2017
 #1
avatar+7387 
+2

Gegeben: quadratische Pyramide (a*a), Höhe der Pyramide h=10 cm, Seitenkante=Seite der Grundfläche (S=a)

Gesucht: Höhe einer Seitenfläche (h') und Länge einer Seite der Grundfläche (a).

 

Guten Morgen Gast!

 

Die Seitenflächen der Pyramide sind gleichseitige Dreiecke mit der Seitenlänge a.

Die Höhe des gleichseitigen Dreiecks ist

\(h'=\sqrt{a^2-(\frac{a}{2})^2}=\sqrt{ \frac{3}{4}a^2}\\\color{blue} h'=\frac{a}{2}\cdot \sqrt{3}\)

Im Längsschnitt durch die Seitenkanten liegt das rechtwinkliche Dreieck mit der Hypotenuse a und den Katheten h und halbe Diagonale \(\frac{d}{2}\).

\(a^2=h^2+(\frac{d}{2})^2\)

 

\(d=a\cdot \sqrt{2}\\ \frac{d}{2}=\frac{a}{\sqrt{2}}\)

 

\(a^2=h^2+\frac{a^2}{2}\\ a^2-\frac{a^2}{2}=h^2\\ \frac{a^2}{2}=h^2\\ a=\sqrt{2h^2}=\sqrt{2\cdot 100cm^2}\)

\(a=14,142cm\)

 

\(h'=\frac{a}{2}\cdot \sqrt{3}\\ \color{blue}h'=\frac{1}{2}\cdot\sqrt{3}\cdot\sqrt{2h^2}\\ h'=\frac{1}{2}\cdot \sqrt{6h^2}=\frac{1}{2}\cdot \sqrt{6\cdot 100cm^2}\)

\(h'=12,247cm\)

 

Die Länge der Seite einer Grundfläche ist a = 14,142cm.

Die Höhe der Seitenfläche ist h' = 12,247cm.

 

Bitte frage nach, wenn noch Fragen zum Verständnis offen sind.

 

Einen schönen Tag wünscht dir

laugh  !

asinus  13.12.2017

16 Benutzer online

Neue Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.