+0  
 
0
935
2
avatar

Berechnung des Volumens eines würfels wenn man nur die Raumdiagonale gegeben hat

 17.05.2015

Beste Antwort 

 #2
avatar+14538 
+3

Guten Abend Anonymous,

Raumdiagonale   $${{\mathtt{e}}}^{{\mathtt{2}}} = {{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}$$       ;      $${{\mathtt{d}}}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}$$        ;   $${{\mathtt{e}}}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}} = {\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}$$

Würfel-Raumdiagonale      $${\mathtt{e}} = {\mathtt{a}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}$$       =>        $${\mathtt{a}} = {\frac{{\mathtt{e}}}{{\sqrt{{\mathtt{3}}}}}}$$

 

Volumen    $${\mathtt{V}} = {{\mathtt{a}}}^{{\mathtt{3}}}$$   =    $${\left({\frac{{\mathtt{e}}}{{\sqrt{{\mathtt{3}}}}}}\right)}^{{\mathtt{3}}}$$      =   $${\frac{{{\mathtt{e}}}^{{\mathtt{3}}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}\right)}}$$   

 

Kontrollrechnung:    e = 10 cm          V = 192,45 cm³

$${\mathtt{V}} = {\frac{{{\mathtt{10}}}^{{\mathtt{3}}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}\right)}} \Rightarrow {\mathtt{V}} = {\mathtt{192.450\: \!089\: \!729\: \!875\: \!254\: \!8}}$$

 

Gruß radix !

 17.05.2015
 #1
avatar+12530 
0

Omi67 17.05.2015
 #2
avatar+14538 
+3
Beste Antwort

Guten Abend Anonymous,

Raumdiagonale   $${{\mathtt{e}}}^{{\mathtt{2}}} = {{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}$$       ;      $${{\mathtt{d}}}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}$$        ;   $${{\mathtt{e}}}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}} = {\mathtt{3}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}$$

Würfel-Raumdiagonale      $${\mathtt{e}} = {\mathtt{a}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}$$       =>        $${\mathtt{a}} = {\frac{{\mathtt{e}}}{{\sqrt{{\mathtt{3}}}}}}$$

 

Volumen    $${\mathtt{V}} = {{\mathtt{a}}}^{{\mathtt{3}}}$$   =    $${\left({\frac{{\mathtt{e}}}{{\sqrt{{\mathtt{3}}}}}}\right)}^{{\mathtt{3}}}$$      =   $${\frac{{{\mathtt{e}}}^{{\mathtt{3}}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}\right)}}$$   

 

Kontrollrechnung:    e = 10 cm          V = 192,45 cm³

$${\mathtt{V}} = {\frac{{{\mathtt{10}}}^{{\mathtt{3}}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}\right)}} \Rightarrow {\mathtt{V}} = {\mathtt{192.450\: \!089\: \!729\: \!875\: \!254\: \!8}}$$

 

Gruß radix !

radix 17.05.2015

0 Benutzer online