$${\frac{{\mathtt{360}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{100}}}{{\mathtt{3}}}}\right)}{{\mathtt{100}}}} = {\mathtt{120}}$$
$${\mathtt{360}}{\mathtt{\,\times\,}}{\mathtt{33.333\: \!333\: \!33}}\% = {\mathtt{119.999\: \!999\: \!988}}$$
$${\frac{{\mathtt{360}}{\mathtt{\,\times\,}}\left({\mathtt{33}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{{\mathtt{100}}}} = {\mathtt{120}}$$
$${\frac{{\mathtt{360}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{100}}}{{\mathtt{3}}}}\right)}{{\mathtt{100}}}} = {\mathtt{120}}$$
$${\mathtt{360}}{\mathtt{\,\times\,}}{\mathtt{33.333\: \!333\: \!33}}\% = {\mathtt{119.999\: \!999\: \!988}}$$
$${\frac{{\mathtt{360}}{\mathtt{\,\times\,}}\left({\mathtt{33}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{{\mathtt{100}}}} = {\mathtt{120}}$$