Beispiel: 50= -10lg(10^-5,7 + 10^ (x/10) Wie löse ich das nach x auf? Danke
Beispiel: Wie löse ich das nach x auf?
$$\mathbf{
50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{x}{10})} \right) }
}\\\\\\
\begin{array}{rcl}
50 &=& -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{x}{10})} \right) } \qquad | \qquad : -10 \\\\
-5 &=& \log_{10}{ \left[10^{(-5,7)} + 10^{(\frac{x}{10})} \right] } \\\\
-5 &=& \log_{10}{ \left[10^{(-5,7)} + 10^{(\frac{x}{10})} \right] }
\qquad | \qquad : 10^x \\\\
10^{-5} &=& 10^{(-5,7)} + 10^{(\frac{x}{10})} \\\\
10^{(\frac{x}{10})} &=&10^{(-5)} - 10^{(-5,7)} \qquad | \qquad \log_{10} \\\\
\log_{10}{ (10^{(\frac{x}{10})}) } &=&\log_{10}{ (10^{(-5)} - 10^{(-5,7)}) }\\\\
\frac{x}{10}\cdot \log_{10}{ (10) } &=&\log_{10}{ (10^{(-5)} - 10^{(-5,7)}) } \qquad | \qquad \log_{10} =1 \\\\
\frac{x}{10} &=&\log_{10}{ (10^{(-5)} - 10^{(-5,7)}) } \\\\
\end{array}$$
$$\begin{array}{rcl}
x &=& 10 \cdot \log_{10}{ (10^{(-5)} - 10^{(-5,7)}) } \\\\
x &=& 10 \cdot \log_{10}{ ( 0,00001 - 0,00000199526 ) } \\\\
x &=& 10 \cdot \log_{10}{ ( 0,00000800474) } \\\\
x &=& 10 \cdot -5,09665289533 \\\\
\mathbf{x} &\mathbf{=}&\mathbf{-50,9665289533}
\end{array}$$
Probe:
$$50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{x}{10})} \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{-50,9665289533}{10})} \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{( -5,09665289533 )} \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 0,00000199526 + 0,00000800474 \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 0,00001\right) } \\\\
50= -10 \cdot (-5) \\\\
50= 50 \qquad \mathrm{okay} \\\\$$
$${\mathtt{50}} = {\mathtt{\,-\,}}\left({\mathtt{10}}{\mathtt{\,\times\,}}{log}_{10}\left({{\mathtt{10}}}^{-{\mathtt{5.7}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{x}}}{{\mathtt{10}}}}\right)}\right)\right)$$ : (-10)
$$-{\mathtt{5}} = {log}_{10}\left({{\mathtt{10}}}^{-{\mathtt{5.7}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{x}}}{{\mathtt{10}}}}\right)}\right)$$ e^x
$${{\mathtt{e}}}^{-{\mathtt{5}}} = {{\mathtt{10}}}^{-{\mathtt{5.7}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{x}}}{{\mathtt{10}}}}\right)}$$ -10^-5.7
$${{\mathtt{e}}}^{-{\mathtt{5}}}{\mathtt{\,-\,}}{{\mathtt{10}}}^{-{\mathtt{5.7}}} = {{\mathtt{10}}}^{\left({\frac{{\mathtt{x}}}{{\mathtt{10}}}}\right)}$$ log
$${log}_{10}\left({{\mathtt{e}}}^{-{\mathtt{5}}}{\mathtt{\,-\,}}{{\mathtt{10}}}^{-{\mathtt{5.7}}}\right) = \left({\frac{{\mathtt{x}}}{{\mathtt{10}}}}\right)$$ *10
$${\mathtt{10}}{\mathtt{\,\times\,}}{log}_{10}\left({{\mathtt{e}}}^{-{\mathtt{5}}}{\mathtt{\,-\,}}{{\mathtt{10}}}^{-{\mathtt{5.7}}}\right) = {\mathtt{x}}$$
$${\mathtt{x}} = -{\mathtt{21.72}}$$
.Beispiel: Wie löse ich das nach x auf?
$$\mathbf{
50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{x}{10})} \right) }
}\\\\\\
\begin{array}{rcl}
50 &=& -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{x}{10})} \right) } \qquad | \qquad : -10 \\\\
-5 &=& \log_{10}{ \left[10^{(-5,7)} + 10^{(\frac{x}{10})} \right] } \\\\
-5 &=& \log_{10}{ \left[10^{(-5,7)} + 10^{(\frac{x}{10})} \right] }
\qquad | \qquad : 10^x \\\\
10^{-5} &=& 10^{(-5,7)} + 10^{(\frac{x}{10})} \\\\
10^{(\frac{x}{10})} &=&10^{(-5)} - 10^{(-5,7)} \qquad | \qquad \log_{10} \\\\
\log_{10}{ (10^{(\frac{x}{10})}) } &=&\log_{10}{ (10^{(-5)} - 10^{(-5,7)}) }\\\\
\frac{x}{10}\cdot \log_{10}{ (10) } &=&\log_{10}{ (10^{(-5)} - 10^{(-5,7)}) } \qquad | \qquad \log_{10} =1 \\\\
\frac{x}{10} &=&\log_{10}{ (10^{(-5)} - 10^{(-5,7)}) } \\\\
\end{array}$$
$$\begin{array}{rcl}
x &=& 10 \cdot \log_{10}{ (10^{(-5)} - 10^{(-5,7)}) } \\\\
x &=& 10 \cdot \log_{10}{ ( 0,00001 - 0,00000199526 ) } \\\\
x &=& 10 \cdot \log_{10}{ ( 0,00000800474) } \\\\
x &=& 10 \cdot -5,09665289533 \\\\
\mathbf{x} &\mathbf{=}&\mathbf{-50,9665289533}
\end{array}$$
Probe:
$$50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{x}{10})} \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{(\frac{-50,9665289533}{10})} \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 10^{(-5,7)} + 10^{( -5,09665289533 )} \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 0,00000199526 + 0,00000800474 \right) } \\\\
50= -10 \cdot \log_{10}{ \left( 0,00001\right) } \\\\
50= -10 \cdot (-5) \\\\
50= 50 \qquad \mathrm{okay} \\\\$$