+0  
 
0
198
1
avatar

Kann mir jemand beweisen, dass es keine natürliche Zahl gibt, die die Gleichung:  erfüllt

 

a³+b³=c³ 

Guest 26.05.2017
Sortierung: 

1+0 Answers

 #1
avatar+7059 
0

Kann mir jemand beweisen, dass es keine natürliche Zahl gibt, die die Gleichung:  erfüllt

a³+b³=c³ 

 

Der Große Fermatsche Satz wurde im 17. Jahrhundert von Pierre de Fermat formuliert, aber erst 1994 von Andrew Wiles und Richard Taylor bewiesen. Er besagt: Ist n  eine natürliche Zahl größer als 2, so kann die n -te Potenz jeder natürlichen Zahl ungleich null nicht in die Summe zweier n-ter Potenzen natürlicher Zahlen ungleich null zerlegt werden. Formal bedeutet dies:

 

Die Gleichung

 

\({\displaystyle a^{n}+b^{n}=c^{n}}\)

 

ist für positive ganze Zahlen a , b , c , n  unlösbar, wenn n  größer als zwei ist.

 

Von wikipedia übernommen

 

laugh  !

asinus  28.05.2017

18 Benutzer online

avatar
avatar
avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details