+0

# ((8 1/7+6 1/8)+7 1/9)+6 1/2+7/8+(3 5/8-5/9)

0
663
4

((8 1/7+6 1/8)+7 1/9)+6 1/2+7/8+(3 5/8-5/9)

27.06.2015

#4
+3

### $${\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{9}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{7}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{5}}}{{\mathtt{8}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$  =

$${\mathtt{30}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{13}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{4}}}{{\mathtt{9}}}}$$           (  $${\frac{{\mathtt{1}}}{{\mathtt{2}}}} = {\frac{{\mathtt{4}}}{{\mathtt{8}}}}$$     ;   $${\frac{{\mathtt{13}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{4}}}{{\mathtt{8}}}} = {\frac{{\mathtt{17}}}{{\mathtt{8}}}}$$ )

$${\mathtt{30}}{\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{72}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1\,071}}{\mathtt{\,-\,}}{\mathtt{224}}\right)}{{\mathtt{504}}}}$$    =

$${\mathtt{30}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{919}}}{{\mathtt{504}}}} = {\mathtt{31.823\: \!412\: \!698\: \!412\: \!698\: \!4}}$$

$$31\frac{415}{504}$$

#### Gruß radix !

28.06.2015

#1
+3

$${\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{9}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{7}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{5}}}{{\mathtt{8}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{9}}}} = {\mathtt{31.823\: \!412\: \!698\: \!412\: \!698\: \!4}}$$

#### =>   $${\frac{{\mathtt{919}}}{{\mathtt{504}}}} = {\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{415}}}{{\mathtt{504}}}}$$

$${\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{415}}}{{\mathtt{504}}}} = {\frac{{\mathtt{919}}}{{\mathtt{504}}}} = {\mathtt{1.823\: \!412\: \!698\: \!412\: \!698\: \!4}}$$

$${\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} = {\mathtt{30}}$$              ;

27.06.2015
#2
+3

27.06.2015
#3
+3

27.06.2015
#4
+3
Beste Antwort

### $${\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{9}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{7}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{5}}}{{\mathtt{8}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{9}}}}$$  =

$${\mathtt{30}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{13}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{4}}}{{\mathtt{9}}}}$$           (  $${\frac{{\mathtt{1}}}{{\mathtt{2}}}} = {\frac{{\mathtt{4}}}{{\mathtt{8}}}}$$     ;   $${\frac{{\mathtt{13}}}{{\mathtt{8}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{4}}}{{\mathtt{8}}}} = {\frac{{\mathtt{17}}}{{\mathtt{8}}}}$$ )

$${\mathtt{30}}{\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{72}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1\,071}}{\mathtt{\,-\,}}{\mathtt{224}}\right)}{{\mathtt{504}}}}$$    =

$${\mathtt{30}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{919}}}{{\mathtt{504}}}} = {\mathtt{31.823\: \!412\: \!698\: \!412\: \!698\: \!4}}$$

$$31\frac{415}{504}$$