3log10x^2-log10*(1/x^4)=30
gesucht ist der Wert von x. Wie berechnet man das?
\(3\cdot log(10x^2)-log(10x^{-4})=30\)
\(log[(10x^2)^3]-log(10x^{-4})=30\)
\(log\ \frac{1000x^6}{10x^{-4}}=30\)
\(log (100x^{10})=30\)
\(100x^{10}=10^{30}\)
\(x^{10}=\frac{10^{30}}{10^2}\)
\(x^{10}=10^{28}\)
\(x=10^{\frac{28}{10}} \)
\(x=10^{2,8}\)
\(x=630,95734448\)
!
!