Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+20

Question: Solve y''(t) - 2y'(t)-3y(t) = 0 where y(0) = 1 and y'(0) = 0.

L{y(t)}2L{y(t)}3L{y(t)}=L{0}

L{y(t)}=s2L{y(t)}sy(0)y(0)L{y(t)}=s2L{y(t)}s10L{y(t)}=s2L{y(t)}s

2L{y(t)}=2[sL{y(t)}y(0)]2L{y(t)}=2[sL{y(t)}1]

s2L{y(t)}s2[sL{y(t)}1]3L{y(t)}=L{0}L{y(t)}[s22s3]=s2L{y(t)}[(s+1)(s3)]=s2L{y(t)}=s2(s+1)(s3)

s2(s+1)(s3)=As+1+Bs3s2=A(s3)+B(s+1)s=3:32=0+B4B=14s=1:12=A(4)+0A=34

L{y(t)}=s2(s+1)(s3)=As+1+Bs3=34(1s+1)+14(1s3)L{y(t)}=34(1s+1)+14(1s3)

L1{1sa}=eat

 

\textcolor[rgb]{150,0,0}{  \begin{array}{rcl}  y(t) &=& \dfrac{3}{4}\cdot e^{-t} + \dfrac{1}{4} \cdot e^{3\cdot t}   \end{array} }

Check:

\begin{array}{lrcl}  (1)&: y(0) &=& \dfrac{3}{4}+\dfrac{1}{4} = 1 \qquad \text{okay} \\\\  (2)&: y'(t) &=& -\dfrac{3}{4}\cdot e^{-t} + 3\cdot \dfrac{1}{4} \cdot e^{3\cdot t}} \\\\   &: y'(0) &=& -\dfrac{3}{4} + \dfrac{3}{4} = 0 \qquad \text{okay}\\  \end{array}\\\\\\  \underbrace{  \begin{array}{lrcl}  &y''(t) &=& \dfrac{3}{4}\cdot e^{-t} + \dfrac{9}{4}\cdot e^{3\cdot t} \\\\  & -2\cdot y'(t) & =& \dfrac{6}{4}\cdot e^{-t} -\dfrac{6}{4}\cdot e^  {3\cdot t} \\\\  & -3\cdot y(t) & =& -\dfrac{9}{4}\cdot e^{-t} -\dfrac{3}{4}\cdot e^{3\cdot t}   \end{array}  }_{ y''(t)-2\cdot y'(t)-3\cdot y(t)= 0 \qquad \text{okay} }

.
04.05.2015