Hallo gandalf the green,
Omis Bedingungen sind richtig, bzw. habe ich auch.
Nur die Gleichung lautet bei mir anders:
}}\\\\\\ \small{\text{Die Gleichung m\"u \ss te lauten: $ \boxed{y = x^3 - x^2 - 5x + 5} $ }}
http://web2.0rechner.de/fragen/eine-grf-3-grades-hat-einen-hochpunkt-h-1-8-bei-x-1-hat-sie-die-gerade-mit-der-funktionsgleichng-g-x-4x-4-als-tangente-bestimmen-sie
How to calcultate the Euler phi function ϕ(n):$Wehavetheprimefactorizationofn=p1⋅p2⋅p3⋯ϕ(n)=n⋅(1−1p1)⋅(1−1p2)⋅(1−1p3)⋯
Example 1:n=6$Theprimefactorizationof6=2∗3=p1∗p2ϕ(6)=6⋅(1−12)⋅(1−13)ϕ(6)=6⋅12⋅23ϕ(6)=63ϕ(6)=2
Example 2:n=9$Theprimefactorizationof9=32=p21ϕ(9)=9⋅(1−13)ϕ(9)=9⋅23ϕ(6)=3⋅2ϕ(6)=6
Example 3:n=7$Theprimefactorizationof7=7=p17$isaprimenumber!$ϕ(7)=7⋅(1−17)ϕ(7)=7⋅67ϕ(7)=6
Example 4:n=11$Theprimefactorizationof11=11=p111$isaprimenumber!$ϕ(11)=11⋅(1−111)ϕ(11)=11⋅1011ϕ(11)=10
\boxed{\text{ In general $ \phi(p) = p-1 $, if p is a prime number }}\\\\ \begin{array}{lr} p = 2: &\phi(2) = 1 \qquad =(2-1)\\ p = 3: &\phi(3) = 2 \qquad =(3-1)\\ p = 5: &\phi(5) = 4 \qquad =(5-1)\\ p = 7: &\phi(7) = 6 \qquad =(7-1)\\ p = 11: &\phi(11) = 10 \qquad =(11-1)\\ p = 13: &\phi(13) = 12 \qquad =(13-1)\\ \cdots & \phi(p) = p-1 \end{array}
The first 99 values of the Phi function are:
![]() | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 |
---|---|---|---|---|---|---|---|---|---|---|
0+ | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | |
10+ | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 |
20+ | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 |
30+ | 8 | 30 | 16 | 20 | 16 | 24 | 12 | 36 | 18 | 24 |
40+ | 16 | 40 | 12 | 42 | 20 | 24 | 22 | 46 | 16 | 42 |
50+ | 20 | 32 | 24 | 52 | 18 | 40 | 24 | 36 | 28 | 58 |
60+ | 16 | 60 | 30 | 36 | 32 | 48 | 20 | 66 | 32 | 44 |
70+ | 24 | 70 | 24 | 72 | 36 | 40 | 36 | 60 | 24 | 78 |
80+ | 32 | 54 | 40 | 82 | 24 | 64 | 42 | 56 | 40 | 88 |
90+ | 24 | 72 | 44 | 60 | 46 | 72 | 32 | 96 | 42 | 60 |