In a triangle ABC, a,b,c are 3 opposite side of each angle A,B,C, if a^2-c^2=2b, and SinA*CosC=3*CosA*SinC
,find b
In a triangle ABC, a,b,c are 3 opposite side of each angle A,B,C, if a^2-c^2=2b, and SinA*CosC=3*CosA*SinC, find b
(1)a2−c2=2b(2)SinA∗CosC=3∗CosA∗SinC
sine rule: sinAa=sinCc⇒sinA=ac⋅sinC(2):ac⋅sinC⋅cosC=3cosA⋅sinC⇒a⋅cosC=3c⋅cosA in every triangle: b=a⋅cosC+c⋅cosA⇒c⋅cosA=b−a⋅cosCa⋅cosC=3(b−a⋅cosC)4⋅a⋅cosC=3ba⋅cosC=34⋅b law of cosines: c2=a2+b2−2ac⋅cosC(1):a2−c2=2ab⋅cosC−b2=2b2ab⋅cosC−b2=2b|:b2⋅a⋅cosC−b=2|a⋅cosC=34⋅b2⋅34⋅b−b=232⋅b−b=2|⋅23b−2b=4b=4
In a triangle ABC, a,b,c are 3 opposite side of each angle A,B,C, if a^2-c^2=2b, and SinA*CosC=3*CosA*SinC, find b
(1)a2−c2=2b(2)SinA∗CosC=3∗CosA∗SinC
sine rule: sinAa=sinCc⇒sinA=ac⋅sinC(2):ac⋅sinC⋅cosC=3cosA⋅sinC⇒a⋅cosC=3c⋅cosA in every triangle: b=a⋅cosC+c⋅cosA⇒c⋅cosA=b−a⋅cosCa⋅cosC=3(b−a⋅cosC)4⋅a⋅cosC=3ba⋅cosC=34⋅b law of cosines: c2=a2+b2−2ac⋅cosC(1):a2−c2=2ab⋅cosC−b2=2b2ab⋅cosC−b2=2b|:b2⋅a⋅cosC−b=2|a⋅cosC=34⋅b2⋅34⋅b−b=232⋅b−b=2|⋅23b−2b=4b=4