Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
599
2
avatar

In a triangle ABC, a,b,c are 3 opposite side of each angle A,B,C, if a^2-c^2=2b, and SinA*CosC=3*CosA*SinC

,find b

 Feb 22, 2015

Best Answer 

 #1
avatar+26396 
+10

In a triangle ABC, a,b,c are 3 opposite side of each angle A,B,C, if a^2-c^2=2b, and SinA*CosC=3*CosA*SinC, find b

 

(1)a2c2=2b(2)SinACosC=3CosASinC

 

 sine rule: sinAa=sinCcsinA=acsinC(2):acsinCcosC=3cosAsinCacosC=3ccosA in every triangle: b=acosC+ccosAccosA=bacosCacosC=3(bacosC)4acosC=3bacosC=34b law of cosines: c2=a2+b22accosC(1):a2c2=2abcosCb2=2b2abcosCb2=2b|:b2acosCb=2|acosC=34b234bb=232bb=2|23b2b=4b=4

 Feb 22, 2015
 #1
avatar+26396 
+10
Best Answer

In a triangle ABC, a,b,c are 3 opposite side of each angle A,B,C, if a^2-c^2=2b, and SinA*CosC=3*CosA*SinC, find b

 

(1)a2c2=2b(2)SinACosC=3CosASinC

 

 sine rule: sinAa=sinCcsinA=acsinC(2):acsinCcosC=3cosAsinCacosC=3ccosA in every triangle: b=acosC+ccosAccosA=bacosCacosC=3(bacosC)4acosC=3bacosC=34b law of cosines: c2=a2+b22accosC(1):a2c2=2abcosCb2=2b2abcosCb2=2b|:b2acosCb=2|acosC=34b234bb=232bb=2|23b2b=4b=4

heureka Feb 22, 2015
 #2
avatar+130466 
0

Brilliant as usual, heureka....!!!!

 

 Feb 22, 2015

1 Online Users

avatar