heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
+5

Let triangle ABC be A(2,-1,0), B(1,2,3), C(-1,0,1), with its orthocenter being H(a,b,c), what is a, b, and c ?

$$\\\small{\text{
$
\vec{u}=\vec{a}-\vec{c}=
\left(
\begin{array}{c}2-(-1)\\-1-0 \\0-1 \end{array}
\right)=\left(
\begin{array}{c}3\\-1 \\-1 \end{array}
\right)\qquad
\vec{v}=\vec{b}-\vec{c}=
\left(
\begin{array}{c}1-(-1)\\2-0 \\3-1 \end{array}
\right)=\left(
\begin{array}{c}2\\2 \\2\end{array}
\right)
$
}}\\\\
\small{\text{
$
u=|\vec{u}|=\sqrt{3^2+(-1)^2+(-1)^2}=\sqrt{11} \qquad
v=|\vec{v}|=\sqrt{2^2+2^2+2^2}=\sqrt{12}
$
}}\\\\
\small{\text{
$
\vec{u_0}=\dfrac{\vec{u}}{u}=
\frac{1}{\sqrt{11}}
\left(
\begin{array}{c}3\\-1 \\-1 \end{array}
\right)\qquad
\vec{v_0}=\dfrac{\vec{v}}{v}=
\frac{1}{\sqrt{12}}
\left(
\begin{array}{c}2\\2 \\2 \end{array}
\right)\qquad
$
}}\\\\
\boxed{
\small{\text{
$
\vec{H}=(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] + \vec{c}
$
}}
}\\\\
\boxed{
\small{\text{
$
\vec{H}=(\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0}+ \lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ] + \vec{c}
$
}}
}\\\\
\boxed{
\small{\text{
$
\vec{H}-\vec{c}=
(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]
=
(\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0}+ \lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ]
$
}}
}\\\\
\small{\text{
$
\mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]
-\lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ]
=(\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0}
-(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} \quad | \quad \cdot \vec{v_0}
$
}}\\\\
\small{\text{
$
\mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]\cdot \vec{v_0}
-\underbrace{\lambda [\vec{u} - (\vec{v_0}\cdot \vec{u}) \cdot \vec{v_0} ]\cdot \vec{v_0}}_{=0}
=(\vec{v_0}\cdot \vec{u}) \cdot (\vec{v_0}\cdot \vec{v_0} )
-(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} )
$
}}\\\\
\small{\text{
$
\mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]\cdot \vec{v_0}
=(\vec{v_0}\cdot \vec{u}) \cdot \underbrace{(\vec{v_0}\cdot \vec{v_0} )}_{=1}
-(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} )
$
}}\\\\
\small{\text{
$
\mu [\underbrace{(\vec{v}\cdot \vec{v_0})}_{=v} - (\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0}) ]
=(\vec{v_0}\cdot \vec{u})
-(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} )
$
}}\\\\
\small{\text{
$
\mu [v - (\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0}) ]
=(\vec{v_0}\cdot \vec{u})
-(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} )
$
}}$$

 

$$\boxed{
\small{\text{
$
\mu=
\dfrac{
(\vec{v_0}\cdot \vec{u})
-(\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0} )
}
{v - (\vec{u_0}\cdot \vec{v}) \cdot (\vec{u_0}\cdot \vec{v_0}) }
\qquad
\vec{H}=(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] + \vec{c}
$
}}
}\\\\
\small{\text{
$
\vec{v}\cdot \vec{u} = \left(\begin{array}{c} 2\\2 \\2 \end{array}\right)
\cdot \left(\begin{array}{c} 3\\-1 \\-1 \end{array}\right) =6-2-2 = 2
$
}}\\\\
\small{\text{
$
\vec{v_0}\cdot \vec{u} = \dfrac{\vec{v}\cdot \vec{u}}{v} = \dfrac{2}{\sqrt{12}}
\qquad \vec{u_0}\cdot \vec{v} = \dfrac{\vec{v}\cdot \vec{u}}{u} = \dfrac{2}{\sqrt{11}}
\qquad \vec{u_0}\cdot \vec{v_0} = \dfrac{\vec{v}\cdot \vec{u}}{v\cdot u} = \dfrac{2}{\sqrt{11}\cdot \sqrt{12}}
$
}}\\\\
\small{\text{
$
\mu=
\dfrac{
\dfrac{2}{\sqrt{12}}
-\dfrac{2}{\sqrt{11}} \cdot \dfrac{2}{\sqrt{11}\cdot \sqrt{12}}
}
{\sqrt{12} - \dfrac{2}{\sqrt{11}} \cdot \dfrac{2}{\sqrt{11}\cdot \sqrt{12}} }
=\dfrac{
\dfrac{1}{\sqrt{12}}\cdot \left(2-\dfrac{4}{11} \right) }
{\dfrac{1}{\sqrt{12}}\cdot \left( 12 -\dfrac{4}{11} \right) }
= \dfrac{18}{128} = \dfrac{9}{64}
$
}}$$

 

$$\\\small{\text{
$
\vec{H}=(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0}+ \mu [\vec{v} - (\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ] + \vec{c}
$
}}\\
\small{\text{
$
\vec{H}=(1-\mu )[(\vec{u_0}\cdot \vec{v}) \cdot \vec{u_0} ]+\mu\vec{v}+ \vec{c}
$
}}\\\\
\small{\text{
$
\vec{H}=
\left(1-\dfrac{9}{64} \right)\cdot
\left[ \dfrac{2} { \sqrt{11} } \cdot \vec{u_0} \right]
+ \dfrac{9}{64}\cdot \vec{v}
+ \vec{c}
$
}}\\\\
\small{\text{
$
\vec{H}=
\left(\dfrac{55}{64} \right)\cdot \left( \dfrac{2} { \sqrt{11} }\right) \cdot \dfrac{\vec{u}}{u}
+ \dfrac{9}{64}\cdot \vec{v}
+ \vec{c}
$
}}\\\\
\small{\text{
$
\vec{H}=
\left(\dfrac{55}{64} \right)\cdot \left( \dfrac{2} { \sqrt{11} }\right) \cdot \dfrac{\vec{u}}{\sqrt{11}}
+ \dfrac{9}{64}\cdot \vec{v}
+ \vec{c}
$
}}\\\\
\small{\text{
$
\vec{H}=
\dfrac{10}{64}\cdot \vec{u}+ \dfrac{9}{64}\cdot \vec{v} + \vec{c}
$
}}$$

 

$$\\ \small{\text{
$
\vec{H}=
\dfrac{10}{64}\cdot
\left(\begin{array}{c}3 \\ -1\\ -1\end{array}\right)
+ \dfrac{9}{64}\cdot
\left(\begin{array}{c}2 \\ 2\\ 2\end{array} \right)
+
\left( \begin{array}{c}-1 \\ 0\\ 1\end{array} \right)
$
}}\\\\\\
\small{\text{
$
\vec{H}=
\left(\begin{array}{c}\dfrac{30}{64}+\dfrac{18}{64}-1 \\ \\ -\dfrac{10}{64}+\dfrac{18}{64}+0\\ \\ -\dfrac{10}{64}+\dfrac{18}{64}+1\end{array}\right)
$
}}\\\\\\
\small{\text{
$
\vec{H}=
\left(\begin{array}{c} -\dfrac{1}{4} \\\\ \dfrac{1}{8} \\\\ 1 \dfrac{1}{8}
\end{array}
\right)
$
}}\\\\\\
\small{\text{
$
\vec{H}=
\left(\begin{array}{c} -0.25 \\ 0.125 \\ 1.125
\end{array}
\right)
$
}}$$

.
27.02.2015
 #1
avatar+26387 
+9

Berechnen Sie alle komplexen Lösungen der folgenden Gleichung: z^2=-1+j {z=-sqrt(j-1), z=sqrt(j-1)} ist als Lösung nicht richtig meint der Lehrer es ist zu einfach. Wie mache ich das sonst noch ?


   k = 0,1,2, ... , n-1

$$\boxed{\ z = a+b\cdot i \qquad r = \sqrt{a^2+b^2}\ }\\\\
z^2= -1 +j \qquad a = -1 \text{ und } b = 1 \qquad r = \sqrt{(-1^2)+1^2} \quad r = \sqrt{2}\\\\
\small{\text{Wir erhalten f\"ur den Betrag $ r = \sqrt{2} $}}\\\\
\boxed{
\sqrt{z}=\sqrt{\sqrt{2}}\cdot \left(
\cos( \frac{\varphi+2k\pi } {2}) + i \cdot \sin( \frac{\varphi+2k\pi }{2} )
\right) \quad k = 0,1
}$$


 $$\boxed{\ \varphi = arg(z) = \arctan{(\frac{b}{a})}\ } \qquad \varphi = \arctan{(\frac{1}{-1})} = -\frac{\pi}{4} = \frac{3}{4}\cdot \pi\\\\
\small{\text{1. L\"osung ( k=0 ):}}\\
\sqrt{z} = \sqrt{r}\left[
\cos( \frac{\varphi}{2}) + i\cdot \sin ({\frac{\varphi}{2}) }
\right]\\\\
\sqrt{z} = \sqrt{\sqrt{2} }\left[
\cos( \frac{\frac{3}{4}\cdot \pi}{2}) + i\cdot \sin ({\frac{\frac{3}{4}\cdot \pi}{2}) }
\right]\\\\
\sqrt{z} = \sqrt{\sqrt{2} }\left[
\cos( \frac{3}{8}\cdot \pi}) + i\cdot \sin ({\frac{3}{8}\cdot \pi}) }
\right]\\\\
\boxed{\sqrt{z} = 0.45508986 + i\cdot 1.098684113}$$
 

 

$$\small{\text{2. L\"osung ( k=1 ):}}\\
\sqrt{z} = \sqrt{r}\left[
\cos( \frac{\varphi+2\pi}{2}) + i\cdot \sin ({\frac{\varphi+2\pi}{2}) }
\right]\\\\
\sqrt{z} = \sqrt{\sqrt{2} }\left[
\cos( \frac{\frac{3}{4}\cdot \pi+2\pi}{2}) + i\cdot \sin ({\frac{\frac{3}{4}\cdot \pi+2\pi}{2}) }
\right]\\\\
\sqrt{z} = \sqrt{\sqrt{2} }\left[
\cos( \frac{11}{8}\cdot \pi}) + i\cdot \sin ({\frac{11}{8}\cdot \pi}) }
\right]\\\\
\boxed{\sqrt{z} = -0.45508986 - i\cdot 1.098684113}$$

.
26.02.2015