For triangle HJK, j = 31, m∠H = 132 degrees, m∠J = 21 degrees, and m∠K = 27 degrees. Find h to the nearest whole number.
tan(132)=hptan(27)=hqp+q=31 m p=htan(132)q=htan(27)htan(132)+htan(27)=31 m h∗(1tan(132)+1tan(27))=31 m h∗(−0.90040404430+1.96261050551)=31 m h∗1.06220646121=31 m h=311.06220646121 m=29.1845334520 m h to the nearest whole number: h=29 m

.