Suppose and
.
Then, what is the average (arithmetic mean) of the three products ,
, and
?
(p+q+r)2=(p+q+r)(p+q+r)=p2+q2+r2+2(pq+qr+rp)(p+q+r)2=p2+q2+r2+2(pq+qr+rp)72=9+2(pq+qr+rp)2(pq+qr+rp)=72−9=49−9=40(pq+qr+rp)=20
the average (arithmetic mean) of the three products ,
, and
? (pq+qr+rp)3=203=623
The sequence ,
,
, . . ., has the property that
for all
.
x11=x10+x9=(x9+x8)+x9=2x9+x8=2x9+x8=2(x8+x7)+x8=3x8+2x7=3x8+2x7=3(x7+x6)+2x7=5x7+3x6=5x7+3x6=5(x6+x5)+3x6=8x6+5x5=8x6+5x5=8(x5+x4)+5x5=13x5+8x4=13x5+8x4=13(x4+x3)+8x4=21x4+13x3=21x4+13x3=21(x3+x2)+13x3=34x3+21x2=34x3+21x2=34(x2+x1)+21x2=55x2+34x1 x11=55x2+34x1
55x2+34x1−x1=9955x2+33x1=99|:115x2+3x1=9
x3==x2+x1x4=x3+x2=2x2+x1x5=x4+x3=3x2+2x1x6=x5+x4=5x2+3x1 x6=5x2+3x1=9