If we add all the exponents up, we get 3^(1+2+3+4... 43) = 3^(946).
3, 9, 27, 81, 243, 729...
3, 9, 5, 4, 1, 3....
There is a cycle of 3, 9, 5, 4, 1 in mod 11.
946 = 1 mod 11, and the first number in the cycle of 3, 9, 5, 4, 1 is 3.
=^._.^=
Find the remainder when 3∗32∗33∗…∗343 is divided by 11.
3∗32∗33∗…∗343=31+2+3+…42+43=3(1+432∗43)=3(442∗43)=322∗43=3946
Euler:3ϕ(11)≡1(mod11)|ϕ(11)=10, ϕ(p)=p−1310=1(mod11)
3946(mod11)≡310∗94+6(mod11)≡(310)9436(mod11)|310≡1(mod11)≡19436(mod11)≡36(mod11)≡729(mod11)3946(mod11)≡3(mod11)