Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
446
2
avatar

Assuming x, y, and z are positive real numbers satisfying

 

xy - z = 15

xz - y = 15

yz - x = 15

 

then, what is the value of xyz?

 Jul 5, 2021
 #1
avatar+26396 
+2

Assuming x, y, and z are positive real numbers satisfying
xyz=15xzy=15yzx=15
then, what is the value of xyz?

 

(1)xyz=15(2)xzy=15(3)yzx=15(1)+(2)+(3):(xyz)+(xzy)+(yzx)=45x+y+z=xy+xz+yz45

 

yzx=15x=yz15xzy=15(yz15)zy=15yz215zy=15yz2y=15z+15y(z21)=15(z+1)y(z1)(z+1)=15(z+1)|:(z+1), z>0!y(z1)=15y=15z1(4)

 

xzy=15y=xz15xyz=15(xz15)xz=15zx215xz=15zx2z=15x+15z(x21)=15(x+1)z(x1)(x+1)=15(x+1)|:(x+1), x>0!z(x1)=15z=15x1(5)

 

xyz=15z=xy15yzx=15(xy15)yx=15xy215yx=15xy2x=15y+15x(y21)=15(y+1)x(y1)(y+1)=15(y+1)|:(y+1), y>0!x(y1)=15x=15y1(6)

 

(4)×(5)×(6):xyz=15y1×15z1×15x1xyz=153(x1)(y1)(z1)(x1)(y1)(z1)=xyz(xy+xz+yz)+(x+y+z)1xyz=153xyz(xy+xz+yz)+(x+y+z)1x+y+z=xy+xz+yz45xyz=153xyz(xy+xz+yz)+(xy+xz+yz45)1xyz=153xyz46xyz(xyz46)=153(xyz)246xyz153=0xyz=46±4624(153)2xyz=46±462+41532xyz=46±156162xyz=46±162612xyz=46±16612xyz=23+861xyz>0!

 

laugh

 Jul 6, 2021
 #2
avatar+130466 
+2

xy  - z    =  15

xz  - y    =  15

yz  - x =     15

 

Subtract  the  2nd equation from the 1st

 

xy - xz  + y - z   =   0

x (y -z)  + 1(y -z)   =  0

(x + 1)  ( y - z)  =  0                          since x is positive, divide both sides  by  (x + 1)

y - z   =   0

y  = z

 

Subtract  the  3rd  equation from the  2nd

xz - yz  + x - y =  0

z (x - y)  + 1(x - y)   = 0

(z + 1) ( x - y)   = 0                  again, z is positive,  divide both sides by (z + 1)

x - y   = 0

x = y

 

So   x = y =  z

In the 1st equation  we  have  that

x^2  - x =  15

x^2 - x  + 1/4   =  15  + 1/4

(x - 1/2)^2  = 61/4

x - 1/2  =   sqrt (61) / 2

x =  ( 1 + sqrt (61) ) / 2

 

So

 

xyz =    [  ( 1 + sqrt (61) ) /2  ] ^3    =    23  +  8sqrt (61)

 

cool cool cool

 Jul 6, 2021

4 Online Users

avatar
avatar