Assuming x, y, and z are positive real numbers satisfying
xy - z = 15
xz - y = 15
yz - x = 15
then, what is the value of xyz?
Assuming x, y, and z are positive real numbers satisfying
xy−z=15xz−y=15yz−x=15
then, what is the value of xyz?
(1)xy−z=15(2)xz−y=15(3)yz−x=15(1)+(2)+(3):(xy−z)+(xz−y)+(yz−x)=45…x+y+z=xy+xz+yz−45
yz−x=15x=yz−15xz−y=15(yz−15)z−y=15yz2−15z−y=15yz2−y=15z+15y(z2−1)=15(z+1)y(z−1)(z+1)=15(z+1)|:(z+1), z>0!y(z−1)=15y=15z−1(4)
xz−y=15y=xz−15xy−z=15(xz−15)x−z=15zx2−15x−z=15zx2−z=15x+15z(x2−1)=15(x+1)z(x−1)(x+1)=15(x+1)|:(x+1), x>0!z(x−1)=15z=15x−1(5)
xy−z=15z=xy−15yz−x=15(xy−15)y−x=15xy2−15y−x=15xy2−x=15y+15x(y2−1)=15(y+1)x(y−1)(y+1)=15(y+1)|:(y+1), y>0!x(y−1)=15x=15y−1(6)
(4)×(5)×(6):xyz=15y−1×15z−1×15x−1xyz=153(x−1)(y−1)(z−1)(x−1)(y−1)(z−1)=xyz−(xy+xz+yz)+(x+y+z)−1xyz=153xyz−(xy+xz+yz)+(x+y+z)−1x+y+z=xy+xz+yz−45xyz=153xyz−(xy+xz+yz)+(xy+xz+yz−45)−1xyz=153xyz−46xyz(xyz−46)=153(xyz)2−46xyz−153=0xyz=46±√462−4∗(−153)2xyz=46±√462+4∗1532xyz=46±√156162xyz=46±√162∗612xyz=46±16√612xyz=23+8√61xyz>0!
xy - z = 15
xz - y = 15
yz - x = 15
Subtract the 2nd equation from the 1st
xy - xz + y - z = 0
x (y -z) + 1(y -z) = 0
(x + 1) ( y - z) = 0 since x is positive, divide both sides by (x + 1)
y - z = 0
y = z
Subtract the 3rd equation from the 2nd
xz - yz + x - y = 0
z (x - y) + 1(x - y) = 0
(z + 1) ( x - y) = 0 again, z is positive, divide both sides by (z + 1)
x - y = 0
x = y
So x = y = z
In the 1st equation we have that
x^2 - x = 15
x^2 - x + 1/4 = 15 + 1/4
(x - 1/2)^2 = 61/4
x - 1/2 = sqrt (61) / 2
x = ( 1 + sqrt (61) ) / 2
So
xyz = [ ( 1 + sqrt (61) ) /2 ] ^3 = 23 + 8sqrt (61)