Find the least positive four-digit solution to the following system of congruences.
7x = 21 (mod 14)
2x + 18 = 16 (mod 9)
Find the least positive four-digit solution to the following system of congruences.
7x≡21(mod14)2x+18≡16(mod9)
7x≡21(mod14)7x≡21−14(mod14)7x≡7(mod14)7x=7+14mm∈Z7x=7+14m|:7x=1+2m|x is an odd number!x≡1(mod2)
...so 7x≡21(mod14) or x≡1(mod2)
2x+18≡16(mod9)2x≡16−18(mod9)2x≡−2(mod9)2x=−2+9nn∈Z2x=−2+9n|x=1+2m2(1+2m)=−2+9n2+4m=−2+9n4m=−4+9nm=−4+9n4m=−4+8n+n4m=−1+2n+n4⏟=rr∈Zm=−1+2n+rr=n44r=nn=4rm=−1+2(4r)+rm=−1+9rx=1+2m|m=−1+9rx=1+2(−1+9r)x=1−2+18rx=−1+18rr∈Z
Find the least positive four-digit solution:
−1+18r>99918r>1000r>100018r>55.ˉ5r=56x=−1+18∗56x=1007
The least positive four-digit solution is 1007