Processing math: 100%
 
+0  
 
0
428
1
avatar

For how many integer values of a does the equation x^2 + ax + 28a = 0 have integer solutions for x?

 May 24, 2021
 #1
avatar+26398 
+2

For how many integer values of a does the equation
x2+ax+28a=0
have integer solutions for
x?

 

Let the roots are r1 and r2:

 

Vieta:

x2+a=(r1+r2)x+28a=r1r2a=(r1+r2)28a=r1r228((r1+r2))=r1r228r128r2=r1r2r1r2+28r1+28r2=0(r1+28)(r2+28)2828=0(r1+28)(r2+28)=2828(r1+28)(r2+28)=784

 

The divisors of 784 are:
  1 |  2 |  4 |   7 |   8 |  14 |  16 | 28 |
 49 | 56 | 98 | 112 | 196 | 392 | 784  (15 divisors)

 

(r1+28)(r2+28)=1784=2392=4196=7112=898=1456=1649=2828

 

(r1+28)r1(r2+28)r2a=r1r21128=2778478428=75627756=7292228=2639239228=36426364=3384428=2419619628=16824168=1447728=2111211228=742174=538828=20989828=702070=50141428=14565628=281428=14161628=12494928=211221=9282828=0282828=000=0494928=21161628=1221+12=9565628=28141428=1428+14=14989828=708828=2070+20=5011211228=747728=2174+21=5319619628=1684428=24168+24=14439239228=3642228=26364+26=33878478428=7561128=27756+27=729

 

Distinct Integer values of a are 7 without a=0: {9, 14, 50, 53 144, 338, 729}

 

laugh

 May 24, 2021

0 Online Users