Let a, b, and c be positive real numbers. Prove that
a^2 + b^2 + c^2 >= ab + ac + bc.
Under what conditions does equality occur?
Let a, b, and c be positive real numbers.
Prove that a2+b2+c2>=ab+ac+bc.
AM≥GM
a+b2≥√aba+b≥2√ab|square both sides(a+b)2≥4aba2+2ab+b2≥4ab|−2aba2+b2≥4ab−2aba2+b2≥2abb+c2≥√bcb+c≥2√bc|square both sides(b+c)2≥4bcb2+2bc+c2≥4bc|−2bcb2+c2≥4bc−2bcb2+c2≥2bca+c2≥√aca+c≥2√ac|square both sides(a+c)2≥4aca2+2ac+c2≥4ac|−2aca2+c2≥4ac−2aca2+c2≥2ac
a2+b2≥2abb2+c2≥2bca2+c2≥2ac(a2+b2)+(b2+c2)+(a2+c2)≥2ab+2bc+2ac2a2+2b2+2c2≥2(ab+bc+ac)2(a2+b2+c2)≥2(ab+bc+ac)|:2a2+b2+c2≥ab+bc+ac
Under what conditions does equality occur?
2(a2+b2+c2)=2(ab+bc+ac)2(a2+b2+c2)−2(ab+bc+ac)=02(a2+b2+c2)−2(ab+bc+ac)=(a−b)2+(b−c)2+(c−a)2(a−b⏟=0)2+(b−c⏟=0)2+(c−a⏟=0)2=0a−b=0a=bb−c=0b=cc−a=0c=a
equality occur when a=b=c