Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
445
1
avatar

Let a, b, and c be positive real numbers.  Prove that

a^2 + b^2 + c^2 >= ab + ac + bc.

 

Under what conditions does equality occur? 

 May 23, 2021
 #1
avatar+26398 
+1

Let a, b, and c be positive real numbers.

Prove that a2+b2+c2>=ab+ac+bc.


AMGM

 

a+b2aba+b2ab|square both sides(a+b)24aba2+2ab+b24ab|2aba2+b24ab2aba2+b22abb+c2bcb+c2bc|square both sides(b+c)24bcb2+2bc+c24bc|2bcb2+c24bc2bcb2+c22bca+c2aca+c2ac|square both sides(a+c)24aca2+2ac+c24ac|2aca2+c24ac2aca2+c22ac

 

a2+b22abb2+c22bca2+c22ac(a2+b2)+(b2+c2)+(a2+c2)2ab+2bc+2ac2a2+2b2+2c22(ab+bc+ac)2(a2+b2+c2)2(ab+bc+ac)|:2a2+b2+c2ab+bc+ac

 

Under what conditions does equality occur? 

2(a2+b2+c2)=2(ab+bc+ac)2(a2+b2+c2)2(ab+bc+ac)=02(a2+b2+c2)2(ab+bc+ac)=(ab)2+(bc)2+(ca)2(ab=0)2+(bc=0)2+(ca=0)2=0ab=0a=bbc=0b=cca=0c=a

equality occur when a=b=c

 

laugh

 May 23, 2021
edited by heureka  May 23, 2021

1 Online Users